A064551 Ado [Simone Caramel]'s function: a(0) = 1, a(n) = a(n-1) + 2*(Fibonacci(n+1)-n), n > 0.
1, 1, 1, 1, 3, 9, 23, 51, 103, 195, 353, 619, 1061, 1789, 2981, 4925, 8087, 13221, 21547, 35039, 56891, 92271, 149541, 242231, 392233, 634969, 1027753, 1663321, 2691723, 4355745, 7048223, 11404779, 18453871, 29859579, 48314441, 78175075, 126490637, 204666901, 331158797
Offset: 0
References
- Ado [Simone Caramel], Postings in egroups and newsgroups.
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
ARIBAS
function a064551(maxarg: integer); var n,r,rm,q,qm1,qm2: integer; begin qm2 := 0; qm1 := 0; rm := 0; for n := 0 to maxarg do if n < 2 then q := 1; else q := qm1 + qm2; end; qm2 := qm1; qm1 := q; if n = 0 then r := 1; else r := rm + 2*(q - n); end; rm := r; write(r," "); end; end; a064551(35);
-
Haskell
a064551 n = a064551_list !! n a064551_list = 1 : zipWith (+) a064551_list (map (* 2) $ zipWith (-) (drop 2 a000045_list) [1..]) -- Reinhard Zumkeller, Sep 13 2013
-
Maple
a:= proc(n) option remember: a(n-1)+2*(combinat[fibonacci](n+1)-n) end: a(0):=1: for n from 0 to 60 do printf(`%d, `, a(n)) od:
-
Mathematica
a[0] = f[0] = f[1] = 1; f[n_] := f[n] = f[n - 1] + f[n - 2]; a[n_] := a[n] = a[n - 1] + 2*(f[n] - n); Table[ a[n], {n, 0, 40} ] LinearRecurrence[{4,-5,1,2,-1},{1,1,1,1,3},50] (* Harvey P. Dale, Sep 27 2011 *)
Formula
From T. D. Noe, Oct 12 2007: (Start)
G.f.: (1 - 3x + 2x^2 + x^3 + x^4)/((x-1)^3 (x^2 + x - 1)).
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5). (End)
a(n) = (1/5)*2^(-n)*(-15*2^n + (10-4*sqrt(5))*(1-sqrt(5))^n + (1+sqrt(5))^n*(10+4*sqrt(5))) - n - n^2. - Jean-François Alcover, May 28 2013
a(n) = a(n-1) - 2 * A065220(n), n > 0. - Reinhard Zumkeller, Sep 13 2013
a(n) = 2*F(n+3) - n^2 - n - 3 = 1 + 2*Sum_{k=1..n} F(k+1) - k = 1 + 2*Sum_{k=1..n} A001924(k-3), F=A000045. - Ehren Metcalfe, Dec 27 2018
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x)*(3 + x*(2 + x)). - Stefano Spezia, Oct 16 2023
Comments