A064617 a(n) = (10^n - 1)*(80/81) + n/9.
9, 98, 987, 9876, 98765, 987654, 9876543, 98765432, 987654321, 9876543210, 98765432099, 987654320988, 9876543209877, 98765432098766, 987654320987655, 9876543209876544, 98765432098765433, 987654320987654322, 9876543209876543211, 98765432098765432100, 987654320987654320989
Offset: 1
Examples
Curious multiplications: 1*8 + 1 = 9; 12*8 + 2 = 98; 123*8 + 3 = 987; 1234*8 + 4 = 9876; 12345*8 + 5 = 98765; 123456*8 + 6 = 987654; 1234567*8 + 7 = 9876543; 12345678*8 + 8 = 98765432; 123456789*8 + 9 = 987654321. - _Vincenzo Librandi_, Aug 07 2010 and _Philippe Deléham_, Mar 09 2014
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 29.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..150
- Index entries for linear recurrences with constant coefficients, signature (12,-21,10).
Programs
-
Maple
A064617:=n->(10^n-1)*(80/81)+n/9; seq(A064617(n), 1..20); # Wesley Ivan Hurt, Mar 10 2014
-
Mathematica
Table[(10^n - 1)*(80/81) + n/9, {n, 20}] (* Wesley Ivan Hurt, Mar 10 2014 *) LinearRecurrence[{12,-21,10},{9,98,987},30] (* Harvey P. Dale, Aug 20 2023 *)
-
PARI
{ a=0; for (n=1, 150, a=10*a + 10 - n; write("b064617.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
-
PARI
Vec(x*(10*x-9)/((x-1)^2*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2014
Formula
From Colin Barker, Sep 15 2014: (Start)
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3).
G.f.: x*(10*x - 9)/((x - 1)^2*(10*x - 1)). (End)
E.g.f.: exp(x)*(80*exp(9*x) + 9*x - 80)/81. - Stefano Spezia, May 28 2023
Extensions
More terms from Colin Barker, Sep 15 2014
Comments