A353094
a(1) = 2; for n > 1, a(n) = 3*a(n-1) + 3 - n.
Original entry on oeis.org
2, 7, 21, 62, 184, 549, 1643, 4924, 14766, 44291, 132865, 398586, 1195748, 3587233, 10761687, 32285048, 96855130, 290565375, 871696109, 2615088310, 7845264912, 23535794717, 70607384131, 211822152372, 635466457094, 1906399371259, 5719198113753, 17157594341234
Offset: 1
-
LinearRecurrence[{5, -7, 3}, {2, 7, 21}, 28] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(2-3*x)/((1-x)^2*(1-3*x)))
-
a(n) = (3^(n+1)+2*n-3)/4;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 3);
A353095
a(1) = 3; for n > 1, a(n) = 4*a(n-1) + 4 - n.
Original entry on oeis.org
3, 14, 57, 228, 911, 3642, 14565, 58256, 233019, 932070, 3728273, 14913084, 59652327, 238609298, 954437181, 3817748712, 15270994835, 61083979326, 244335917289, 977343669140, 3909374676543, 15637498706154, 62549994824597, 250199979298368, 1000799917193451
Offset: 1
-
LinearRecurrence[{6, -9, 4}, {3, 14, 57}, 25] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(3-4*x)/((1-x)^2*(1-4*x)))
-
a(n) = (2*4^(n+1)+3*n-8)/9;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 4);
A353096
a(1) = 4; for n > 1, a(n) = 5*a(n-1) + 5 - n.
Original entry on oeis.org
4, 23, 117, 586, 2930, 14649, 73243, 366212, 1831056, 9155275, 45776369, 228881838, 1144409182, 5722045901, 28610229495, 143051147464, 715255737308, 3576278686527, 17881393432621, 89406967163090, 447034835815434, 2235174179077153, 11175870895385747
Offset: 1
-
LinearRecurrence[{7, -11, 5}, {4, 23, 117}, 23] (* Amiram Eldar, Apr 23 2022 *)
nxt[{n_, a_}] := {n + 1, 5 a + 4 - n}; NestList[nxt,{1,4},30][[;;,2]] (* Harvey P. Dale, Apr 28 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(4-5*x)/((1-x)^2*(1-5*x)))
-
a(n) = (3*5^(n+1)+4*n-15)/16;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 5);
A353097
a(1) = 5; for n > 1, a(n) = 6*a(n-1) + 6 - n.
Original entry on oeis.org
5, 34, 207, 1244, 7465, 44790, 268739, 1612432, 9674589, 58047530, 348285175, 2089711044, 12538266257, 75229597534, 451377585195, 2708265511160, 16249593066949, 97497558401682, 584985350410079, 3509912102460460, 21059472614762745, 126356835688576454
Offset: 1
-
LinearRecurrence[{8, -13, 6}, {5, 34, 207}, 22] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(5-6*x)/((1-x)^2*(1-6*x)))
-
a(n) = (4*6^(n+1)+5*n-24)/25;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 6);
A353098
a(1) = 6; for n>1, a(n) = 7 * a(n-1) + 7 - n.
Original entry on oeis.org
6, 47, 333, 2334, 16340, 114381, 800667, 5604668, 39232674, 274628715, 1922401001, 13456807002, 94197649008, 659383543049, 4615684801335, 32309793609336, 226168555265342, 1583179886857383, 11082259208001669, 77575814456011670, 543030701192081676
Offset: 1
-
LinearRecurrence[{9, -15, 7}, {6, 47, 333}, 21] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(6-7*x)/((1-x)^2*(1-7*x)))
-
a(n) = (5*7^(n+1)+6*n-35)/36;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 7);
A353099
a(1) = 7; for n>1, a(n) = 8 * a(n-1) + 8 - n.
Original entry on oeis.org
7, 62, 501, 4012, 32099, 256794, 2054353, 16434824, 131478591, 1051828726, 8414629805, 67317038436, 538536307483, 4308290459858, 34466323678857, 275730589430848, 2205844715446775, 17646757723574190, 141174061788593509, 1129392494308748060
Offset: 1
-
LinearRecurrence[{10, -17, 8}, {7, 62, 501}, 20] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(7-8*x)/((1-x)^2*(1-8*x)))
-
a(n) = (6*8^(n+1)+7*n-48)/49;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 8);
A353100
a(1) = 8; for n>1, a(n) = 9 * a(n-1) + 9 - n.
Original entry on oeis.org
8, 79, 717, 6458, 58126, 523137, 4708235, 42374116, 381367044, 3432303395, 30890730553, 278016574974, 2502149174762, 22519342572853, 202674083155671, 1824066748401032, 16416600735609280, 147749406620483511, 1329744659584351589, 11967701936259164290
Offset: 1
-
LinearRecurrence[{11, -19, 9}, {8, 79, 717}, 20] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(8-9*x)/((1-x)^2*(1-9*x)))
-
a(n) = (7*9^(n+1)+8*n-63)/64;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 9);
A064616
a(n) = (10^n-1)*(91/81)-n*10^n/9.
Original entry on oeis.org
9, 89, 789, 6789, 56789, 456789, 3456789, 23456789, 123456789, 123456789, -9876543211, -209876543211, -3209876543211, -43209876543211, -543209876543211, -6543209876543211, -76543209876543211, -876543209876543211, -9876543209876543211
Offset: 1
-
LinearRecurrence[{21,-120,100},{9,89,789},20] (* Harvey P. Dale, May 15 2022 *)
-
{ a=0; q=1; for (n=1, 150, a+=(10 - n)*q; q*=10; write("b064616.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
-
Vec(x*(100*x-9)/((x-1)*(10*x-1)^2) + O(x^100)) \\ Colin Barker, Sep 15 2014
Showing 1-8 of 8 results.