cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064694 Add column entries of the table with rows (1,2,0,0...), (0,3,4,5,0,0...), (0,0,6,7,8,9,0,0...), (0,0,0,10,11,12,13,14,0,0...), ...

Original entry on oeis.org

1, 5, 10, 22, 34, 58, 80, 120, 155, 215, 266, 350, 420, 532, 624, 768, 885, 1065, 1210, 1430, 1606, 1870, 2080, 2392, 2639, 3003, 3290, 3710, 4040, 4520, 4896, 5440, 5865, 6477, 6954, 7638, 8170, 8930, 9520, 10360, 11011, 11935, 12650, 13662, 14444
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 12 2001

Keywords

Examples

			a(1)=1, a(2)=2+3=5, a(3)=4+6=10, a(4)=5+7+10=22.
		

Crossrefs

Cf. A007584.

Programs

  • Mathematica
    Table[ Sum[ Binomial[n-k+1, 2] + k, {k, 0, Floor[n/2]}], {n, 1, 45}] (* Jean-François Alcover, Sep 16 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,5,10,22,34,58,80},50] (* Harvey P. Dale, Dec 11 2015 *)
  • PARI
    { for (n=1, 1000, a=sum(k=0, n\2, binomial(n - k + 1, 2) + k); write("b064694.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 22 2009
    
  • PARI
    Vec(x*(2*x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Feb 17 2015

Formula

a(2n-1) = n*(n+1)*(7*n-4)/6 (see A007584), a(2n) = n*(n+1)*(7*n+8)/6.
a(n) = sum{k=0..floor((n+1)/2), (n-k+1)ceiling((n-k+1)/2)+k+if(mod(n-k+1, 2) =0, ceiling((n-k+1)/2), 0)}. - Paul Barry, Aug 25 2004
a(n) = sum{k=0..floor(n/2), C(n-k+1,2)+k}; - Paul Barry, Jul 23 2008
a(n) = (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(14*n+15+17*(-1)^n)/384. - Luce ETIENNE, Feb 17 2015
From Colin Barker, Feb 17 2015: (Start)
a(n) = (7*n^3+30*n^2+32*n)/48 for n even.
a(n) = (7*n^3+27*n^2+17*n-3)/48 for n odd.
G.f.: x*(2*x^2+4*x+1) / ((x-1)^4*(x+1)^3).
(End)