cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118575 Dividuus numbers: numbers which are divisible by (1) the sum of their digits,(2) the product of their digits,(3) the digital root and (4) the multiplicative digital root.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 111, 112, 132, 135, 144, 216, 312, 315, 432, 612, 624, 1116, 1212, 1344, 1416, 2112, 2232, 3168, 3312, 4112, 4224, 6624, 8112, 11112, 11115, 11133, 11172, 11232, 11313, 11331, 11424, 11664, 12132, 12216, 12312, 12432
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 07 2006

Keywords

Comments

Dividuus : Latin for "divisible" Most of these numbers are even, but there are some odd numbers too. However, none of them seem to end on 7 (except for the obvious number 7 itself). Are there numbers in the sequence ending in 7?

Examples

			624 is in the sequence because (1) the sum of its digits is 6+4+2=12, (2) the product of its digits is 6*4*2=48, (3) the digital root is 3, (4) the multiplicative digital root is 6 and 624 is divisible by 12,48,3 and 6.
		

Crossrefs

Cf. A007953 (sum of digits), A007954 (product of digits), A010888 (digital root), A031347 (multiplicative digital root).
Intersection of A038186 and A064700 and A064807.
Subsequence of A005349, A007602, A038186, A064700, A064807.

Programs

  • Maple
    filter:= proc(n)
    local L, s,p;
      L:= convert(n,base,10);
      s:= convert(L,`+`);
      if n mod s <> 0 then return false fi;
      p:= convert(L,`*`);
      if p = 0 or n mod p <> 0 then return false fi;
      while s > 10 do
        s:= convert(convert(s,base,10),`+`);
      od:
      if n mod s <> 0 then return false fi;
      while p > 10 do
        p:= convert(convert(p, base, 10),`*`);
      od:
      p > 0 and n mod p = 0;
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Aug 24 2014
  • Python
    from operator import mul
    from functools import reduce
    from gmpy2 import t_mod, mpz
    def A031347(n):
        while n > 9:
            n = reduce(mul, (int(d) for d in str(n)))
        return n
    A118575 = [n for n in range(1, 10**9) if A031347(n) and not
               (str(n).count('0') or t_mod(n, (1+t_mod((n-1), 9))) or
               t_mod(n, A031347(n)) or t_mod(n,sum((mpz(d) for d in str(n))))
               or t_mod(n, reduce(mul,(mpz(d) for d in str(n)))))]
    # Chai Wah Wu, Aug 26 2014

Extensions

Inserted a(17)=216 by Chai Wah Wu, Aug 24 2014

A118696 Semiprimes which are divisible by their multiplicative digital root.

Original entry on oeis.org

4, 6, 9, 15, 26, 34, 35, 62, 111, 115, 134, 278, 314, 355, 395, 398, 535, 694, 755, 1111, 1115, 1126, 1135, 1315, 1322, 1355, 1535, 1795, 2962, 3155, 3338, 3662, 3898, 3994, 4174, 4714, 5315, 6166, 6326, 6334, 6362, 6686, 6866, 6914, 6922, 7115, 7195, 7915
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 20 2006

Keywords

Examples

			134 is in the sequence because it is a semiprime and it is divisible by its multiplicative digital root, 2.
		

Crossrefs

Intersection of A001358 and A064700.

Programs

  • Mathematica
    spQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; mdrQ[n_] := Mod[n, NestWhile[Times @@ IntegerDigits@# &, n, UnsameQ, All]] == 0; Select[ Range@9754, spQ@# && mdrQ@# &] (* Robert G. Wilson v, Aug 04 2006 *)
    mdr[n_]:=Module[{c=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]},If[c>0,c,Pi]]; Select[ Range[ 8000],PrimeOmega[#]==2&&Divisible[#,mdr[#]]&] (* Harvey P. Dale, Feb 27 2024 *)
  • PARI
    A031347(n)= { local(resul,ncpy); if(n<10, return(n) ); ncpy=n; resul = ncpy % 10; ncpy = (ncpy - ncpy%10)/10; while( ncpy > 0, resul *= ncpy %10; ncpy = (ncpy - ncpy%10)/10; ); return(A031347(resul)); } { for(n=4,5000, if( bigomega(n)==2, dr=A031347(n); if(dr !=0 && n % dr == 0, print1(n,","); ); ); ); } \\ R. J. Mathar, May 23 2006

Extensions

Corrected by R. J. Mathar, May 23 2006
More terms from Robert G. Wilson v, Aug 04 2006

A382402 Numbers divisible by the product of their digits (mod 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 26, 34, 35, 37, 48, 55, 62, 64, 66, 72, 73, 75, 76, 78, 84, 88, 95, 96, 98, 99, 111, 112, 115, 126, 132, 134, 135, 136, 137, 144, 148, 155, 162, 164, 168, 172, 173, 175, 176, 184, 188, 192, 195, 196, 198, 199, 212, 216, 228, 232, 244, 248, 264, 266
Offset: 1

Views

Author

Enrique Navarrete, Mar 23 2025

Keywords

Comments

Unlike A007602 and A064700, where there are no other primes besides 2, 3, 5, 7 and primes with repunits, this sequence contains other primes such as 37, 73 and 137.
The sequence has asymptotic density 0, since it contains no numbers with digit 5 and an even digit. - Robert Israel, Jun 01 2025

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,t;
      L:= convert(n,base,10);
      t:= convert(L,`*`) mod 10;
      t > 0 and n mod t = 0
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jun 01 2025
  • Mathematica
    Select[Range[300], (prod = Mod[Times @@ IntegerDigits[#], 10]) > 0 && Divisible[#, prod] &] (* Amiram Eldar, Mar 23 2025 *)
  • PARI
    isok(k) = my(p=lift(vecprod(apply(x->Mod(x, 10), digits(k))))); if (p, !(k % p)); \\ Michel Marcus, Mar 31 2025
  • Python
    from math import prod
    def ok(n): return (p:=prod(map(int, str(n)))%10) > 0 and n%p == 0
    print([k for k in range(300) if ok(k)]) # Michael S. Branicky, Mar 23 2025
    
Showing 1-3 of 3 results.