cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064702 Nonnegative numbers such that additive and multiplicative digital roots coincide.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 123, 132, 137, 139, 168, 173, 179, 186, 188, 193, 197, 213, 231, 233, 267, 276, 299, 312, 317, 319, 321, 323, 332, 346, 364, 371, 389, 391, 398, 436, 463, 618, 627, 634, 643, 672, 681, 713, 719, 726, 731, 762, 791, 816, 818, 839
Offset: 1

Views

Author

Santi Spadaro, Oct 12 2001

Keywords

Comments

If k is in this sequence then all permutations of (the digits of) k are in this sequence.
A010888(a(n)) = A031347(a(n)). - Reinhard Zumkeller, Jul 10 2013

Crossrefs

Programs

  • Haskell
    a064702 n = a064702_list !! (n-1)
    a064702_list = filter (\x -> a010888 x == a031347 x) [1..]
    -- Reinhard Zumkeller, Jul 10 2013
    
  • Maple
    A007954 := proc(n) return mul(d, d=convert(n,base,10)): end: A031347 := proc(n) local m: m:=n: while(length(m)>1)do m:=A007954(m): od: return m: end: A064702 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(A031347(k)-1 = (k-1) mod 9)then return k: fi: od: end: seq(A064702(n),n=1..56); # Nathaniel Johnston, May 04 2011
  • Mathematica
    okQ[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]== NestWhile[ Total[ IntegerDigits[ #]]&, n,#>9&]; Select[Range[1000],okQ]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    is(n) = my(cn = n); while(cn > 9, d = digits(cn); cn = prod(i = 1, #d, d[i])); cn - 1 == (n-1)%9 \\ David A. Corneth, Aug 23 2018
    
  • Python
    from math import prod
    def A010888(n):
        while n > 9: n = sum(map(int, str(n)))
        return n
    def A031347(n):
        while n > 9: n = prod(map(int, str(n)))
        return n
    def ok(n): return A010888(n) == A031347(n)
    print([k for k in range(840) if ok(k)]) # Michael S. Branicky, Sep 17 2022

Extensions

Definition rephrased by Reinhard Zumkeller, Jul 10 2013
Initial 0 added by Halfdan Skjerning, Aug 21 2018