cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064739 Primes p such that Fibonacci(p)-1 is divisible by p.

Original entry on oeis.org

2, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619
Offset: 1

Views

Author

Shane Findley and N. J. A. Sloane, Oct 17 2001

Keywords

Crossrefs

{2} union A045468. Complement is A003631 minus {2}.

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[Mod[(Fibonacci[p]-1),p]==0,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
    Select[Prime[Range[150]],Divisible[Fibonacci[#]-1,#]&] (* Harvey P. Dale, Sep 24 2022 *)
  • PARI
    forprime(p=2,700, if((fibonacci(p)-1)%p==0,print1(p,", ")))
    
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if ((fibonacci(p) - 1)%p==0, write("b064739.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 24 2009

Formula

Presumably this consists of 2 together with the primes congruent to +-1 mod 5.

Extensions

More terms from Klaus Brockhaus, Oct 18 2001