cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064761 a(n) = 15*n^2.

Original entry on oeis.org

0, 15, 60, 135, 240, 375, 540, 735, 960, 1215, 1500, 1815, 2160, 2535, 2940, 3375, 3840, 4335, 4860, 5415, 6000, 6615, 7260, 7935, 8640, 9375, 10140, 10935, 11760, 12615, 13500, 14415, 15360, 16335, 17340, 18375, 19440, 20535, 21660, 22815
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 6-partite graph of order 6n, K_n,n,n,n,n,n.

Crossrefs

Programs

Formula

a(n) = 15*A000290(n) = 5*A033428(n) = 3*A033429(n). - Omar E. Pol, Dec 13 2008
a(n) = A008587(n)*A008585(n). - Reinhard Zumkeller, Apr 12 2010
a(n) = a(n-1) + 30*n - 15 for n > 0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
a(n) = A022272(n) + A022272(-n). - Bruno Berselli, Mar 31 2015
a(n) = t(6*n) - 6*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(6*n) - 6*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/90.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/180.
Product_{n>=1} (1 + 1/a(n)) = sqrt(15)*sinh(Pi/sqrt(15))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(15)*sin(Pi/sqrt(15))/Pi. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 15*x*(1 + x)/(1 - x)^3.
E.g.f.: 15*x*(1 + x)*exp(x).
a(n) = n*A008597(n) = A195046(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)