A064762 a(n) = 21*n^2.
0, 21, 84, 189, 336, 525, 756, 1029, 1344, 1701, 2100, 2541, 3024, 3549, 4116, 4725, 5376, 6069, 6804, 7581, 8400, 9261, 10164, 11109, 12096, 13125, 14196, 15309, 16464, 17661, 18900, 20181, 21504, 22869, 24276, 25725, 27216, 28749
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[21*n^2 : n in [0..50]]; // Wesley Ivan Hurt, Jul 04 2014
-
Mathematica
21 Range[0, 50]^2 (* Wesley Ivan Hurt, Jul 04 2014 *) LinearRecurrence[{3,-3,1},{0,21,84},40] (* Harvey P. Dale, Jul 29 2019 *)
-
PARI
a(n)=21*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 42*n + a(n-1) - 21 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = t(7*n) - 7*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(7*n) - 7*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 21*x*(1 + x)/(1-x)^3.
E.g.f.: 21*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments