A064801 Take 1, skip 2, take 2, skip 3, take 3, etc.
1, 4, 5, 9, 10, 11, 16, 17, 18, 19, 25, 26, 27, 28, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a064801 n = a064801_list !! (n-1) a064801_list = f 1 [1..] where f k xs = us ++ f (k + 1) (drop (k + 1) vs) where (us, vs) = splitAt k xs -- Reinhard Zumkeller, May 16 2014
-
Maple
seq(`if`(floor(sqrt(k)) * (floor(sqrt(k)) + 1) > k, k, NULL), k = 0..2034); # a(1)..a(1000), Rainer Rosenthal, Jul 19 2024
-
Mathematica
a = Table[n, {n, 0, 200} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b] Flatten[Table[Range[n^2,n^2+n-1],{n,12}]] (* Harvey P. Dale, Dec 18 2015 *)
-
PARI
{ n=0; for (m=1, 10^9, s=m^2; a=0; for (k=0, m - 1, a=s+k; write("b064801.txt", n++, " ", a); if (n==1000, return)) ) } \\ Harry J. Smith, Sep 26 2009
-
Python
from math import isqrt # after Rainer Rosenthal def isA(k: int): return k < ((s:=isqrt(k)) * (s + 1)) print([k for k in range(129) if isA(k)]) # Peter Luschny, Jul 19 2024
Formula
a(n) = A004202(n) - 1.
Can be interpreted as a table read by rows: T(n,k) = n^2 + k, 0 <= k < n. T(n,k) = 0 iff k > A000196(n); T(n,0) = A000290(n); T(n,1) = A002522(n) for n > 1; T(n,2) = A010000(n) = A059100(n) for n > 2; T(n, n-3) = A014209(n-1) for n > 2; T(n, n-2) = A028552(n) for n > 1; T(n, n-1) = A028387(n-1); T(2*n+1, n) = A001107(n+1). - Reinhard Zumkeller, Nov 18 2003
Numbers k such that floor(sqrt(k)) * (floor(sqrt(k)) + 1) > k. - Rainer Rosenthal, Jul 19 2024
Comments