A064807 Numbers which are divisible by their digital root (A010888).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 19, 20, 21, 24, 27, 28, 30, 36, 37, 38, 39, 40, 42, 45, 46, 48, 50, 54, 55, 56, 57, 60, 63, 64, 66, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 90, 91, 92, 93, 95, 96, 99, 100, 102, 108, 109, 110, 111, 112, 114, 117, 118
Offset: 1
Examples
48: 4 + 8 = 12 -> 1 + 2 = 3. 48 = 3 * 16 therefore 48 = a(28).
Links
- Ray Chandler, Table of n, a(n) for n = 1..4196 (first 1000 terms from Harry J. Smith)
- Index entries for linear recurrences with constant coefficients, order 1322.
Programs
-
Haskell
a064807 n = a064807_list !! (n-1) a064807_list = filter (\x -> x `mod` a010888 x == 0) [1..] -- Reinhard Zumkeller, Jan 03 2014
-
Maple
A064807 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(k mod (((k-1) mod 9) + 1) = 0)then return k: fi: od: end: seq(A064807(n),n=1..100); # Nathaniel Johnston, May 05 2011
-
Mathematica
Select[Range[125], Divisible[#, Mod[# - 1, 9] + 1] &] (* Alonso del Arte, Nov 01 2013 *)
-
PARI
is(n)=n%((n-1)%9+1)==0 \\ Charles R Greathouse IV, Dec 26 2013
Formula
a(n) = a(n-1321) + 2520. - Charles R Greathouse IV, Dec 26 2013
2520n/1321 - 10 < a(n) <= 2520n/1321. (In fact, if you exclude n = 10 mod 1321, you can replace 10 with 9.) - Charles R Greathouse IV, Jan 03 2023
a(n) = a(n-1) + a(n-1321) - a(n-1322). - Charles R Greathouse IV, Apr 20 2023
Extensions
Offset changed from 0 to 1 by Harry J. Smith, Sep 26 2009
Comments