cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064853 Decimal expansion of the Lemniscate constant.

Original entry on oeis.org

5, 2, 4, 4, 1, 1, 5, 1, 0, 8, 5, 8, 4, 2, 3, 9, 6, 2, 0, 9, 2, 9, 6, 7, 9, 1, 7, 9, 7, 8, 2, 2, 3, 8, 8, 2, 7, 3, 6, 5, 5, 0, 9, 9, 0, 2, 8, 6, 3, 2, 4, 6, 3, 2, 5, 6, 3, 3, 6, 4, 3, 4, 0, 7, 6, 0, 1, 5, 8, 1, 1, 7, 4, 1, 4, 0, 8, 2, 8, 5, 0, 0, 4, 6, 0, 5, 9, 1, 0, 6, 5, 9, 2, 2, 8, 5, 8, 1, 8, 6, 8, 9
Offset: 1

Views

Author

Eric W. Weisstein, Sep 22 2001

Keywords

Examples

			5.244115108584239620929679...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(1/4)^2/Sqrt(2*Pi(R)); // G. C. Greubel, Oct 07 2018
  • Mathematica
    First@RealDigits[ N[ Gamma[ 1/4 ]^2/Sqrt[ 2 Pi ], 102 ] ]
  • PARI
    { allocatemem(932245000); default(realprecision, 5080); x=gamma(1/4)^2/sqrt(2*Pi); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b064853.txt", n, " ", d)); } \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    gamma(1/2)*gamma(1/4)/gamma(3/4) \\ Charles R Greathouse IV, Oct 29 2021
    

Formula

Equals Gamma(1/4)^2/sqrt(2*Pi). - G. C. Greubel, Oct 07 2018
Equals 2*A062539 = 4*A085565. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 23 2022: (Start)
Equals 4*Integral_{x=0..Pi/2} 1/sqrt(2*(1 - (1/2)*sin(x)^2)) dx [Gauss, 1799] (see Faulhuber et al.).
Equals 2*sqrt(2)*A093341. (End)