A064944 a(n) = Sum_{i|n, j|n, j >= i} j.
1, 5, 7, 17, 11, 38, 15, 49, 34, 60, 23, 132, 27, 82, 82, 129, 35, 191, 39, 207, 112, 126, 47, 384, 86, 148, 142, 283, 59, 469, 63, 321, 172, 192, 172, 666, 75, 214, 202, 597, 83, 640, 87, 435, 403, 258, 95, 1016, 162, 485, 262, 511, 107, 812, 264, 813, 292, 324
Offset: 1
Keywords
Examples
a(6) = max(1,1)+max(1,2)+max(1,3)+max(1,6)+max(2,2)+max(2,3)+max(2,6)+max(3,3)+max(3,6)+max(6,6)=38, or a(6) = dot_product(1,2,3,4)*(1,2,3,6)=1*1+2*2+3*3+4*6=38.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Crossrefs
Programs
-
Haskell
a064944 = sum . zipWith (*) [1..] . a027750_row' -- Reinhard Zumkeller, Jul 14 2015
-
Maple
with(numtheory): seq(add(i*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
-
Mathematica
A064944[n_] := #.Range[Length[#]] & [Divisors[n]]; Array[A064944, 100] (* Paolo Xausa, Aug 07 2025 *)
-
PARI
a(n) = my(d=divisors(n)); sum(i=1, length(d), i*d[i]); \\ Harry J. Smith, Sep 30 2009
-
Python
from sympy import divisors def A064944(n): return sum(a*b for a, b in enumerate(divisors(n),1)) # Chai Wah Wu, Aug 07 2025
Formula
a(n) = Sum_{i=1..tau(n)} i*d_i, where {d_i}, i=1..tau(n) is the increasing sequence of divisors of n.
From Ridouane Oudra, Aug 01 2025: (Start)
a(n) = Sum_{d|n} (n/d)*A135539(n,d).