cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064944 a(n) = Sum_{i|n, j|n, j >= i} j.

Original entry on oeis.org

1, 5, 7, 17, 11, 38, 15, 49, 34, 60, 23, 132, 27, 82, 82, 129, 35, 191, 39, 207, 112, 126, 47, 384, 86, 148, 142, 283, 59, 469, 63, 321, 172, 192, 172, 666, 75, 214, 202, 597, 83, 640, 87, 435, 403, 258, 95, 1016, 162, 485, 262, 511, 107, 812, 264, 813, 292, 324
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = max(1,1)+max(1,2)+max(1,3)+max(1,6)+max(2,2)+max(2,3)+max(2,6)+max(3,3)+max(3,6)+max(6,6)=38, or a(6) = dot_product(1,2,3,4)*(1,2,3,6)=1*1+2*2+3*3+4*6=38.
		

Crossrefs

Programs

  • Haskell
    a064944 = sum . zipWith (*) [1..] . a027750_row'
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Maple
    with(numtheory): seq(add(i*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    A064944[n_] := #.Range[Length[#]] & [Divisors[n]];
    Array[A064944, 100] (* Paolo Xausa, Aug 07 2025 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, length(d), i*d[i]); \\ Harry J. Smith, Sep 30 2009
    
  • Python
    from sympy import divisors
    def A064944(n): return sum(a*b for a, b in enumerate(divisors(n),1)) # Chai Wah Wu, Aug 07 2025

Formula

a(n) = Sum_{i=1..tau(n)} i*d_i, where {d_i}, i=1..tau(n) is the increasing sequence of divisors of n.
a(n) = Sum_{i=1..A000005(n)} i*A027750(n, i). - Michel Marcus, Jun 10 2015
From Ridouane Oudra, Aug 01 2025: (Start)
a(n) = Sum_{d|n} (n/d)*A135539(n,d).
a(n) = A064946(n) + A000203(n).
a(n) = (A064948(n) + A000203(n))/2.
a(n) = A337360(n) - A064945(n).
a(n) = A064948(n) - A064946(n).
a(n) = A064840(n) - A064947(n). (End)