A064969 Number of cyclic subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).
1, 8, 14, 36, 32, 112, 58, 148, 131, 256, 134, 504, 184, 464, 448, 596, 308, 1048, 382, 1152, 812, 1072, 554, 2072, 807, 1472, 1184, 2088, 872, 3584, 994, 2388, 1876, 2464, 1856, 4716, 1408, 3056, 2576, 4736, 1724, 6496, 1894, 4824, 4192, 4432, 2258, 8344
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110 and arXiv, arXiv:1103.5861 [math.NT], 2011.
- László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv:1203.6201 [math.GR], 2012.
Crossrefs
Programs
-
Maple
with(numtheory): # define Jordan totient function J(r,n) J(r,n) := add(d^r*mobius(n/d), d in divisors(n)): seq(add(J(3,d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
-
Mathematica
a[n_] := Sum[EulerPhi[i] EulerPhi[j] (EulerPhi[k] / EulerPhi[LCM[i, j, k]]), {i, Divisors[n]}, {j, Divisors[n]}, {k, Divisors[n]}]; Array[a, 48] (* Jean-François Alcover, Dec 13 2018, after Vladeta Jovovic *) f[p_, e_] := 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
-
PARI
a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, eulerphi(i)*eulerphi(j)*eulerphi(k)/eulerphi(lcm(lcm(i, j), k))))); \\ Michel Marcus, Dec 14 2018
-
PARI
a160889(n) = sumdiv(n, d, moebius(n/d)*d^3)/eulerphi(n); a(n) = sumdiv(n, d, a160889(d)); \\ Seiichi Manyama, May 12 2021
Formula
a(n) = Sum_{i|n, j|n, k|n} phi(i)*phi(j)*phi(k)/phi(lcm(i, j, k)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = A002117 * A330595 / 3 = 0.700772... . (End)
a(n) = Sum_{d divides n} J_3(d)/phi(d) = Sum_{1 <= i, j, k <= n} 1/phi(n/gcd(i,j,k,n)), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 23 2024
Extensions
Formula and more terms from Vladeta Jovovic, Oct 30 2001
Comments