cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064988 Multiplicative with a(p^e) = prime(p)^e.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 27, 25, 33, 31, 45, 41, 51, 55, 81, 59, 75, 67, 99, 85, 93, 83, 135, 121, 123, 125, 153, 109, 165, 127, 243, 155, 177, 187, 225, 157, 201, 205, 297, 179, 255, 191, 279, 275, 249, 211, 405, 289, 363, 295, 369, 241, 375, 341, 459, 335, 327
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Examples

			a(12) = a(2^2*3) = prime(2)^2 * prime(3) = 3^2*5 = 45, where prime(n) = A000040(n).
		

Crossrefs

Cf. A000040, A003961, A003963 (a left inverse), A006450, A048767, A257538, A290641.
Cf. A076610 (terms sorted into ascending order).

Programs

  • Maple
    a:= n-> mul(ithprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 06 2018
  • Mathematica
    Table[If[n == 1, 1, Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> Prime[p]^e]], {n, 58}] (* Michael De Vlieger, Aug 22 2017 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=1; for (i=1, length(f), a*=prime(f[1, i])^f[2, i]); write("b064988.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
    
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]);); factorback(f);} \\ Michel Marcus, Aug 08 2017
    
  • Python
    from sympy import factorint, prime
    from operator import mul
    def a(n): return 1 if n==1 else reduce(mul, [prime(p)**e for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 08 2017
  • Scheme
    (define (A064988 n) (if (= 1 n) n (* (A000040 (A020639 n)) (A064988 (A032742 n))))) ;; Antti Karttunen, Aug 08 2017
    

Formula

From Antti Karttunen, Aug 08 & 22 2017: (Start)
For n = p_{i1} * p_{i2} * ... * p_{ik}, where the indices i1, i2, ..., ik of primes p are not necessarily distinct, a(n) = A006450(i1) * A006450(i2) * ... * A006450(ik).
a(n) = A003961(A290641(n)).
A046523(a(n)) = A046523(n). [Preserves the prime signature of n].
A003963(a(n)) = n.
(End)