cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065034 a(n) = Lucas(2*n) + 1.

Original entry on oeis.org

3, 4, 8, 19, 48, 124, 323, 844, 2208, 5779, 15128, 39604, 103683, 271444, 710648, 1860499, 4870848, 12752044, 33385283, 87403804, 228826128, 599074579, 1568397608, 4106118244, 10749957123, 28143753124, 73681302248, 192900153619, 505019158608, 1322157322204
Offset: 0

Views

Author

N. J. A. Sloane, Nov 04 2001

Keywords

Crossrefs

Cf. A002878 (first differences). - R. J. Mathar, Jul 18 2009

Programs

  • Magma
    [ Lucas(2*n) + 1: n in [0..210]]; // Vincenzo Librandi, Apr 15 2011
  • Maple
    a:= n-> (<<0|1>, <1|1>>^(2*n). <<2,1>>)[1, 1]+1:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2016
  • Mathematica
    LucasL[2 Range[30]]+1 (* Harvey P. Dale, Oct 21 2011 *)
    LinearRecurrence[{4, -4, 1}, {3, 4, 8}, 30] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    a(n) = { fibonacci(2*n + 1) + fibonacci(2*n - 1) + 1 } \\ Harry J. Smith, Oct 03 2009
    
  • PARI
    Vec((3-2*x)*(1-2*x)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Nov 01 2016
    

Formula

a(n) = F(2*n+1) + F(2*n-1) + 1 = A005248(n) + 1.
From R. J. Mathar, Jul 18 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: 1/(1-x) + (2-3*x)/(1-3*x+x^2). (End)
a(n) = 1 + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n. - Colin Barker, Nov 01 2016

Extensions

a(0)=3 prepended by Joerg Arndt, Nov 01 2016