A065140 a(n) = 2^n*(2*n)!.
1, 4, 96, 5760, 645120, 116121600, 30656102400, 11158821273600, 5356234211328000, 3278015337332736000, 2491291656372879360000, 2301953490488540528640000, 2541356653499348743618560000, 3303763649549153366704128000000, 4995290638118319890456641536000000
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
Table[2^n (2n)!,{n,0,15}] (* Harvey P. Dale, Nov 28 2011 *)
-
PARI
{ for (n=0, 100, write("b065140.txt", n, " ", 2^n*(2*n)!) ) } \\ Harry J. Smith, Oct 11 2009
Formula
Hypergeometric generating function, in Maple notation: 1/sqrt(1-8*x), i.e., a(0)=1, a(n)=round(evalf(subs(x=0, n!*diff(1/(sqrt(1-8*x)), x$n)))), for n>=1.
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} x^n*exp(-sqrt(x/2))/(2*sqrt(2*x)) dx, for n>=0.
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 4*x*(k+1)*(2*k+1)/(4*x*(k+1)*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(sqrt(2)/2).
Sum_{n>=0} (-1)^n/a(n) = cos(sqrt(2)/2). (End)
From Alexandre Herrera, Apr 18 2025: (Start)
Sum_{n>=0} x^(4*n)*(-1)^(n)/a(2n) = cos(x/2)*cosh(x/2).
Sum_{n>=0} x^(4*n+2)*(-1)^(n)/a(2n+1) = sin(x/2)*sinh(x/2).
Sum_{n>=0} x^(2*n)*(-1)^(n)/a(n) = cos(x*sqrt(2)/2).
Sum_{n>=0} x^(2*n)/a(n) = cosh(x*sqrt(2)/2). (End)
Comments