cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065140 a(n) = 2^n*(2*n)!.

Original entry on oeis.org

1, 4, 96, 5760, 645120, 116121600, 30656102400, 11158821273600, 5356234211328000, 3278015337332736000, 2491291656372879360000, 2301953490488540528640000, 2541356653499348743618560000, 3303763649549153366704128000000, 4995290638118319890456641536000000
Offset: 0

Views

Author

Karol A. Penson, Oct 16 2001

Keywords

Comments

From Enrique Navarrete, Aug 29 2025: (Start)
For n > 0, 1/2*a(n) is the number of ways to seat 2*n people on linearly ordered benches placing an even number of people (>=2) on each bench.
For example, 1/2*a(4)=322560 since the number of ways are (number of people in parentheses):
1 bench (8): 40320 ways;
2 benches (6,2): 80640 ways;
2 benches (4,4): 40320 ways;
3 benches (4,2,2): 120960 ways;
4 benches (2,2,2,2): 40320 ways.
If the benches are not linearly ordered the number of ways is A088026.
If we seat an odd number of people on linearly ordered benches the number of ways is A005443. (End)

Crossrefs

Programs

  • Mathematica
    Table[2^n (2n)!,{n,0,15}] (* Harvey P. Dale, Nov 28 2011 *)
  • PARI
    { for (n=0, 100, write("b065140.txt", n, " ", 2^n*(2*n)!) ) } \\ Harry J. Smith, Oct 11 2009

Formula

Hypergeometric generating function, in Maple notation: 1/sqrt(1-8*x), i.e., a(0)=1, a(n)=round(evalf(subs(x=0, n!*diff(1/(sqrt(1-8*x)), x$n)))), for n>=1.
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} x^n*exp(-sqrt(x/2))/(2*sqrt(2*x)) dx, for n>=0.
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 4*x*(k+1)*(2*k+1)/(4*x*(k+1)*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(sqrt(2)/2).
Sum_{n>=0} (-1)^n/a(n) = cos(sqrt(2)/2). (End)
From Alexandre Herrera, Apr 18 2025: (Start)
Sum_{n>=0} x^(4*n)*(-1)^(n)/a(2n) = cos(x/2)*cosh(x/2).
Sum_{n>=0} x^(4*n+2)*(-1)^(n)/a(2n+1) = sin(x/2)*sinh(x/2).
Sum_{n>=0} x^(2*n)*(-1)^(n)/a(n) = cos(x*sqrt(2)/2).
Sum_{n>=0} x^(2*n)/a(n) = cosh(x*sqrt(2)/2). (End)