A065177
Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 15, 12, 4, 1, 0, 9, 42, 42, 20, 5, 1, 0, 18, 107, 156, 90, 30, 6, 1, 0, 30, 294, 554, 420, 165, 42, 7, 1, 0, 56, 780, 2028, 1910, 930, 273, 56, 8, 1, 0, 99, 2128, 7350, 8820, 5155, 1806, 420, 72, 9, 1, 0, 186, 5781, 26936
Offset: 0
Upper left corner starts as:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 3, 6, 9, 18, ...
1, 2, 6, 15, 42, 107, 294, ...
1, 3, 12, 42, 156, 554, 2028, ...
1, 4, 20, 90, 420, 1910, 8820, ...
1, 5, 30, 165, 930, 5155, 28830, ...
1, 6, 42, 273, 1806, 11809, 77658, ...
...
-
[seq(DistSS_table(j),j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
with(numtheory); DistSS := proc(n,b) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
-
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
Table[a[n], {n, 0, 119}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)
A065178
Number of site swap patterns with 2 balls and exact period n.
Original entry on oeis.org
1, 2, 6, 15, 42, 107, 294, 780, 2128, 5781, 15918, 43885, 122010, 340323, 954394, 2685930, 7588770, 21507696, 61144062, 174283887, 498012094, 1426213191, 4092816966, 11767176070, 33890202192, 97761428205, 282424564744
Offset: 1
We have one period 1 (2), two period 2 (31/13 and 40/04) and six period three 2-ball siteswaps (312, 330, 411, 420, 501, 600) (The average of the digits is always 2).
-
[seq(DistSS(p,2),p=1..60)];
A065178 := proc(n)
add( mobius(n/d)*(3^d-2^d),d=numtheory[divisors](n)) /n ;
end proc:
seq(A065178(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * (3^#-2^#)&] / n; Array[a, 30] (* Jean-François Alcover, Mar 05 2016, after R. J. Mathar *)
A065180
Number of site swap patterns with 4 balls and exact period n.
Original entry on oeis.org
1, 4, 20, 90, 420, 1910, 8820, 40590, 187880, 871494, 4057620, 18945960, 88738020, 416787030, 1962922276, 9268287390, 43868210820, 208109782580, 989400443220, 4713395564772, 22497100553820, 107572434560790, 515241748300020
Offset: 1
-
[seq(DistSS(p,4),p=1..60)];
A065180 := proc(n)
add( mobius(n/d)*(5^d-4^d),d=numtheory[divisors](n)) /n ;
end proc:
seq(A065180(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*(5^# - 4^#)&]/n; Array[a, 25] (* Jean-François Alcover, Mar 06 2016 *)
A383042
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Euler transform of j-> k^(j-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 15, 6, 0, 1, 5, 20, 42, 42, 9, 0, 1, 6, 30, 90, 156, 107, 18, 0, 1, 7, 42, 165, 420, 554, 294, 30, 0, 1, 8, 56, 273, 930, 1910, 2028, 780, 56, 0, 1, 9, 72, 420, 1806, 5155, 8820, 7350, 2128, 99, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 6, 12, 20, 30, 42, ...
0, 3, 15, 42, 90, 165, 273, ...
0, 6, 42, 156, 420, 930, 1806, ...
0, 9, 107, 554, 1910, 5155, 11809, ...
0, 18, 294, 2028, 8820, 28830, 77658, ...
...
Showing 1-4 of 4 results.
Comments