A065177
Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 15, 12, 4, 1, 0, 9, 42, 42, 20, 5, 1, 0, 18, 107, 156, 90, 30, 6, 1, 0, 30, 294, 554, 420, 165, 42, 7, 1, 0, 56, 780, 2028, 1910, 930, 273, 56, 8, 1, 0, 99, 2128, 7350, 8820, 5155, 1806, 420, 72, 9, 1, 0, 186, 5781, 26936
Offset: 0
Upper left corner starts as:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 3, 6, 9, 18, ...
1, 2, 6, 15, 42, 107, 294, ...
1, 3, 12, 42, 156, 554, 2028, ...
1, 4, 20, 90, 420, 1910, 8820, ...
1, 5, 30, 165, 930, 5155, 28830, ...
1, 6, 42, 273, 1806, 11809, 77658, ...
...
-
[seq(DistSS_table(j),j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
with(numtheory); DistSS := proc(n,b) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
-
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
Table[a[n], {n, 0, 119}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)
A065178
Number of site swap patterns with 2 balls and exact period n.
Original entry on oeis.org
1, 2, 6, 15, 42, 107, 294, 780, 2128, 5781, 15918, 43885, 122010, 340323, 954394, 2685930, 7588770, 21507696, 61144062, 174283887, 498012094, 1426213191, 4092816966, 11767176070, 33890202192, 97761428205, 282424564744
Offset: 1
We have one period 1 (2), two period 2 (31/13 and 40/04) and six period three 2-ball siteswaps (312, 330, 411, 420, 501, 600) (The average of the digits is always 2).
-
[seq(DistSS(p,2),p=1..60)];
A065178 := proc(n)
add( mobius(n/d)*(3^d-2^d),d=numtheory[divisors](n)) /n ;
end proc:
seq(A065178(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * (3^#-2^#)&] / n; Array[a, 30] (* Jean-François Alcover, Mar 05 2016, after R. J. Mathar *)
A065179
Number of site swap patterns with 3 balls and exact period n.
Original entry on oeis.org
1, 3, 12, 42, 156, 554, 2028, 7350, 26936, 98874, 365196, 1353520, 5039580, 18831306, 70626140, 265741350, 1002984060, 3796211692, 14406086604, 54801192684, 208932673508, 798218225802, 3055417434732, 11716355452900
Offset: 1
We have one period 1 (3, the three-ball cascade), three period two (42/24, 51/15 = three-ball shower and 60/06) and twelve period three 3-ball siteswaps (423, 441, 450, 522, 531, 603, 612, 630, 711, 720, 801, 900) (The average of digits is always 3).
-
[seq(DistSS(p,3),p=1..60)];
A065179 := proc(n)
add( mobius(n/d)*(4^d-3^d),d=numtheory[divisors](n)) /n ;
end proc:
seq(A065179(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*(4^# - 3^#)&]/n; Array[a, 25] (* Jean-François Alcover, Mar 06 2016 *)
A255253
Complete list of siteswaps (indecomposable ground-state in concatenated decimal notation organized first by sum of digits and then by magnitude).
Original entry on oeis.org
0, 1, 2, 3, 4, 31, 40, 5, 6, 42, 51, 60, 312, 330, 411, 420, 501, 600, 7, 8, 53, 62, 71, 3122, 3302, 4013, 4112, 4130, 4202, 4400, 5111, 5120, 5201, 5300, 6011, 6020, 7001, 8000, 9, 423, 441, 450, 522, 531, 603, 612, 630
Offset: 1
There are 13 siteswap sequences that have a digit-sum of 9. In order, these are 9, 423, 441, 450, 522, 531, 603, 612, 630, 711, 720, 801, 900.
A383042
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Euler transform of j-> k^(j-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 15, 6, 0, 1, 5, 20, 42, 42, 9, 0, 1, 6, 30, 90, 156, 107, 18, 0, 1, 7, 42, 165, 420, 554, 294, 30, 0, 1, 8, 56, 273, 930, 1910, 2028, 780, 56, 0, 1, 9, 72, 420, 1806, 5155, 8820, 7350, 2128, 99, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 6, 12, 20, 30, 42, ...
0, 3, 15, 42, 90, 165, 273, ...
0, 6, 42, 156, 420, 930, 1806, ...
0, 9, 107, 554, 1910, 5155, 11809, ...
0, 18, 294, 2028, 8820, 28830, 77658, ...
...
Showing 1-5 of 5 results.
Comments