cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A065177 Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 15, 12, 4, 1, 0, 9, 42, 42, 20, 5, 1, 0, 18, 107, 156, 90, 30, 6, 1, 0, 30, 294, 554, 420, 165, 42, 7, 1, 0, 56, 780, 2028, 1910, 930, 273, 56, 8, 1, 0, 99, 2128, 7350, 8820, 5155, 1806, 420, 72, 9, 1, 0, 186, 5781, 26936
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Examples

			Upper left corner starts as:
  1, 0,  0,   0,    0,     0,     0, ...
  1, 1,  2,   3,    6,     9,    18, ...
  1, 2,  6,  15,   42,   107,   294, ...
  1, 3, 12,  42,  156,   554,  2028, ...
  1, 4, 20,  90,  420,  1910,  8820, ...
  1, 5, 30, 165,  930,  5155, 28830, ...
  1, 6, 42, 273, 1806, 11809, 77658, ...
  ...
		

Crossrefs

Row 1: A059966, row 2: A065178, row 3: A065179, row 4: A065180.
Column 1: A002378, column 2: A059270.
Main diagonal gives A306173.
Cf. also A065167. trinv given at A054425.

Programs

  • Maple
    [seq(DistSS_table(j),j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
    with(numtheory); DistSS := proc(n,b) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
    DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
    a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
    Table[a[n], {n, 0, 119}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)

Formula

Row n is the inverse Euler transform of j-> n^(j-1). - Alois P. Heinz, Jun 23 2018

A065180 Number of site swap patterns with 4 balls and exact period n.

Original entry on oeis.org

1, 4, 20, 90, 420, 1910, 8820, 40590, 187880, 871494, 4057620, 18945960, 88738020, 416787030, 1962922276, 9268287390, 43868210820, 208109782580, 989400443220, 4713395564772, 22497100553820, 107572434560790, 515241748300020
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Crossrefs

Row 4 of A065177.

Programs

  • Maple
    [seq(DistSS(p,4),p=1..60)];
    A065180 := proc(n)
        add( mobius(n/d)*(5^d-4^d),d=numtheory[divisors](n)) /n ;
    end proc:
    seq(A065180(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*(5^# - 4^#)&]/n; Array[a, 25] (* Jean-François Alcover, Mar 06 2016 *)

Formula

G.f.: Sum_{k>=1} mu(k) * log(1 + x^k/(1 - 5*x^k))/k. - Seiichi Manyama, Apr 14 2025

A065179 Number of site swap patterns with 3 balls and exact period n.

Original entry on oeis.org

1, 3, 12, 42, 156, 554, 2028, 7350, 26936, 98874, 365196, 1353520, 5039580, 18831306, 70626140, 265741350, 1002984060, 3796211692, 14406086604, 54801192684, 208932673508, 798218225802, 3055417434732, 11716355452900
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Examples

			We have one period 1 (3, the three-ball cascade), three period two (42/24, 51/15 = three-ball shower and 60/06) and twelve period three 3-ball siteswaps (423, 441, 450, 522, 531, 603, 612, 630, 711, 720, 801, 900) (The average of digits is always 3).
		

Crossrefs

Row 3 of A065177.

Programs

  • Maple
    [seq(DistSS(p,3),p=1..60)];
    A065179 := proc(n)
        add( mobius(n/d)*(4^d-3^d),d=numtheory[divisors](n)) /n ;
    end proc:
    seq(A065179(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*(4^# - 3^#)&]/n; Array[a, 25] (* Jean-François Alcover, Mar 06 2016 *)

Formula

G.f.: Sum_{k>=1} mu(k) * log(1 + x^k/(1 - 4*x^k))/k. - Seiichi Manyama, Apr 14 2025

A065481 Decimal expansion of Product_{p prime} (1 - 1/(p^2-2)).

Original entry on oeis.org

3, 8, 8, 9, 4, 5, 1, 8, 9, 9, 7, 9, 5, 6, 1, 9, 2, 9, 3, 1, 1, 5, 7, 8, 7, 8, 9, 7, 6, 4, 4, 5, 0, 9, 1, 2, 6, 7, 6, 5, 4, 4, 9, 5, 4, 2, 7, 5, 6, 9, 5, 8, 6, 4, 7, 4, 1, 4, 3, 2, 0, 9, 8, 3, 7, 0, 0, 3, 9, 1, 2, 3, 3, 1, 9, 1, 7, 9, 0, 3, 2, 8, 0, 9, 7, 9, 7, 2, 7, 7, 5, 9, 6, 0, 8, 6, 9, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.38894518997956192931157878976445...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 2000; digits = 98; terms = 2000; P[n_] := PrimeZetaP[n ]; LR = LinearRecurrence[{0, 5, 0, -6}, {0, 0, -2, 0}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2-2)) \\ Amiram Eldar, Mar 15 2021

A255253 Complete list of siteswaps (indecomposable ground-state in concatenated decimal notation organized first by sum of digits and then by magnitude).

Original entry on oeis.org

0, 1, 2, 3, 4, 31, 40, 5, 6, 42, 51, 60, 312, 330, 411, 420, 501, 600, 7, 8, 53, 62, 71, 3122, 3302, 4013, 4112, 4130, 4202, 4400, 5111, 5120, 5201, 5300, 6011, 6020, 7001, 8000, 9, 423, 441, 450, 522, 531, 603, 612, 630
Offset: 1

Views

Author

Gordon Hamilton, Feb 18 2015

Keywords

Comments

Siteswaping is worthy of exploration in the elementary school classroom. In my experience (Gordon Hamilton) students across a full spectrum of ability find the subject matter intriguing and the mathematics engaging.
By "indecomposable" we mean that the juggling state sequence associated to each loop should not return to the ground state 7 (xxx) until after the last throw.
By "ground state" we mean that the permutation is chosen that is as large as possible. Example: 3302 is the same as 3023 and 0233 and 2330. Only the 3302 is in the list because it is the largest number.
The list breaks down at term 57, which requires a digit for "10." In the classroom this can be solved by writing "10" vertically or using commas.

Examples

			There are 13 siteswap sequences that have a digit-sum of 9. In order, these are 9, 423, 441, 450, 522, 531, 603, 612, 630, 711, 720, 801, 900.
		

Crossrefs

A383042 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Euler transform of j-> k^(j-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 15, 6, 0, 1, 5, 20, 42, 42, 9, 0, 1, 6, 30, 90, 156, 107, 18, 0, 1, 7, 42, 165, 420, 554, 294, 30, 0, 1, 8, 56, 273, 930, 1910, 2028, 780, 56, 0, 1, 9, 72, 420, 1806, 5155, 8820, 7350, 2128, 99, 0
Offset: 1

Views

Author

Seiichi Manyama, Apr 13 2025

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6, ...
  0,  2,   6,   12,   20,    30,    42, ...
  0,  3,  15,   42,   90,   165,   273, ...
  0,  6,  42,  156,  420,   930,  1806, ...
  0,  9, 107,  554, 1910,  5155, 11809, ...
  0, 18, 294, 2028, 8820, 28830, 77658, ...
  ...
		

Crossrefs

Columns k=1..5 give A000007, A059966, A065178, A065179, A065180.
Main diagonal gives A306173.
Cf. A065177 (another version).

Programs

  • PARI
    a(n, k) = sumdiv(n, d, moebius(n/d)*(k^d-(k-1)^d))/n;

Formula

A(n,k) = (1/n) * Sum_{d|n} mu(n/d) * (k^d - (k-1)^d).
A(n,k) = (1/n) * (k^n - (k-1)^n - Sum_{d
A(n,k) = A074650(n,k) - A074650(n,k-1).
Product_{n>=1} 1/(1 - x^n)^A(n,k) = (1 - (k-1)*x)/(1 - k*x).
G.f. of column k: Sum_{j>=1} mu(j) * log(1 + x^j/(1 - k*x^j)) / j.
Showing 1-6 of 6 results.