cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049001 a(n) = prime(n)^2 - 2.

Original entry on oeis.org

2, 7, 23, 47, 119, 167, 287, 359, 527, 839, 959, 1367, 1679, 1847, 2207, 2807, 3479, 3719, 4487, 5039, 5327, 6239, 6887, 7919, 9407, 10199, 10607, 11447, 11879, 12767, 16127, 17159, 18767, 19319, 22199, 22799, 24647, 26567, 27887
Offset: 1

Views

Author

Keywords

Comments

Smallest numbers k such that k*prime(n)^2 + 1 is a square. - Bruno Berselli, Apr 19 2013

Crossrefs

Programs

Formula

a(n) = A001248(n) - 2.
a(n) = A182200(n) + 1. - Wesley Ivan Hurt, Oct 11 2013
Product_{n>=1} (1 - 1/a(n)) = A065481. - Amiram Eldar, Nov 07 2022

A065178 Number of site swap patterns with 2 balls and exact period n.

Original entry on oeis.org

1, 2, 6, 15, 42, 107, 294, 780, 2128, 5781, 15918, 43885, 122010, 340323, 954394, 2685930, 7588770, 21507696, 61144062, 174283887, 498012094, 1426213191, 4092816966, 11767176070, 33890202192, 97761428205, 282424564744
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

When interspersed with 0's, exponents in expansion of A065481 as a product zeta(n)^(-a(n)).

Examples

			We have one period 1 (2), two period 2 (31/13 and 40/04) and six period three 2-ball siteswaps (312, 330, 411, 420, 501, 600) (The average of the digits is always 2).
		

Crossrefs

Programs

  • Maple
    [seq(DistSS(p,2),p=1..60)];
    A065178 := proc(n)
        add( mobius(n/d)*(3^d-2^d),d=numtheory[divisors](n)) /n ;
    end proc:
    seq(A065178(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * (3^#-2^#)&] / n; Array[a, 30] (* Jean-François Alcover, Mar 05 2016, after R. J. Mathar *)

Formula

a(n) ~ 3^n/n. - Vaclav Kotesovec, Mar 05 2016
Inverse Euler transform of A133494. - Alois P. Heinz, Jun 23 2018
G.f.: Sum_{k>=1} mu(k) * log(1 + x^k/(1 - 3*x^k))/k. - Seiichi Manyama, Apr 14 2025

A078076 Continued fraction expansion of Product_{p prime} (1 - 1/(p^2-2)).

Original entry on oeis.org

0, 2, 1, 1, 3, 54, 1, 1, 5, 2, 3, 2, 2, 2, 2, 2, 1, 3, 32, 2, 1, 2, 17, 1, 1, 1, 1, 14, 4, 1, 19, 4, 2, 3, 40, 1, 1, 2, 1, 19, 2, 3, 5324, 2, 1, 3, 2, 1, 5, 3, 1, 1, 17, 1, 1, 2, 8, 1, 2, 2, 3, 2, 2, 1, 2, 15, 1, 7, 1, 5, 2, 1, 4, 16, 272, 1, 8, 3, 1, 2, 3, 3, 39, 2, 2, 1, 4, 1, 1, 1, 2, 3
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065481 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1 - 1/(p^2-2))) \\ Amiram Eldar, Mar 15 2021

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024
Showing 1-3 of 3 results.