A065331 Largest 3-smooth divisor of n.
1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 27, 4, 1, 6, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 12, 1, 2, 9, 64, 1, 6, 1, 4, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 81, 2, 1, 12, 1, 2, 3, 8, 1, 18, 1, 4, 3, 2, 1, 96
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- M. A. Bennett, M. Filaseta, and O. Trifonov, On the factorization of consecutive integers, J. Reine Angew. Math. 629 (2009), pp. 171-200.
- Jon Maiga, Computer-generated formulas for A065331, Sequence Machine.
Crossrefs
Programs
-
Haskell
a065331 = f 2 1 where f p y x | r == 0 = f p (y * p) x' | otherwise = if p == 2 then f 3 y x else y where (x', r) = divMod x p -- Reinhard Zumkeller, Nov 19 2015
-
Magma
[Gcd(n,6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
-
Maple
A065331 := proc(n) n/A065330(n) ; end: # R. J. Mathar, Jun 24 2009 seq(2^padic:-ordp(n,2)*3^padic:-ordp(n,3), n=1..100); # Robert Israel, Feb 08 2016
-
Mathematica
Table[GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *) a[n_] := Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
-
PARI
a(n)=3^valuation(n,3)<
Charles R Greathouse IV, Aug 21 2011 -
PARI
a(n)=gcd(n,6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
-
PARI
a(n)=gcd(6^logint(n,2),n) \\ 'optimized' version of Sykora's script; Charles R Greathouse IV, Jul 23 2024
Formula
a(n) = n / A065330(n).
Multiplicative with a(2^e)=2^e, a(3^e)=3^e, a(p^e)=1, p>3. - Vladeta Jovovic, Nov 05 2001
Dirichlet g.f.: zeta(s)*(1-2^(-s))*(1-3^(-s))/ ( (1-2^(1-s))*(1-3^(1-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = gcd(n,6^n). - Stanislav Sykora, Feb 08 2016
Sum_{k=1..n} a(k) ~ n*(log(n)^2 + (2*gamma + 3*log(2) + 2*log(3) - 2)*log(n) + (2 + log(2)^2/6 + 3*log(2)*(log(3) - 1) - 2*log(3) + log(3)^2/6 + gamma*(3*log(2) + 2*log(3) - 2) - 2*sg1)) / (6*log(2)*log(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 19 2020
Comments