A065377 Primes not of the form p + k^2, with p prime and k > 0.
2, 5, 13, 31, 37, 61, 127, 379, 439, 571, 829, 991, 1549, 3319, 7549
Offset: 1
Keywords
Programs
-
Maple
N:= 10^6: # to get all entries <= N Primes:= select(isprime,{2,seq(2*i+1,i=1..floor((N-1)/2))}): A:= NULL: for i from 1 to nops(Primes) do for k from floor(sqrt(Primes[i])) to 1 by -1 do if isprime(Primes[i] - k^2) then break fi od: if k = 0 then A:= A, Primes[i] fi; od: A; # Robert Israel, Sep 03 2014
-
Mathematica
Do[ k = 1; p = Prime[n]; While[k^2 < p && !PrimeQ[p - k^2], k++ ]; If[k^2 > p, Print[p]], {n, 1, 10^6} ] Module[{nn=1000,pr},pr=Flatten[Table[Prime[n]+Range[nn]^2,{n,nn}]];Complement[Prime[Range[nn]],pr]] (* Harvey P. Dale, May 30 2014 *)
-
PARI
is(p)=forstep(m=2,sqrtint(p),2,if(isprime(p-m^2),return(0)));isprime(p) && (p==2 || !issquare(p-2)) \\ Charles R Greathouse IV, Jun 04 2012
Extensions
Offset corrected by Charles R Greathouse IV, May 29 2012
Comments