A064233 Numbers that are not the sum of a prime number and a nonzero square.
1, 2, 5, 10, 13, 25, 31, 34, 37, 58, 61, 64, 85, 91, 121, 127, 130, 169, 196, 214, 226, 289, 324, 370, 379, 400, 439, 526, 529, 571, 625, 676, 706, 730, 771, 784, 829, 841, 991, 1024, 1089, 1225, 1255, 1351, 1414, 1444, 1521, 1549, 1681, 1849, 1906, 1936, 2116
Offset: 1
Examples
5 = 1+4 or 2+3; a prime and a square do not appear together in either sum.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- I. V. Poljakov, On the exceptional set for the sum of a prime and a perfect square, 1982 Math. USSR Izv. 19 611.
Programs
-
Mathematica
Complement[ Table[ n, {n, 1, 10000} ], Union[ Flatten[ Table[ Prime[ i ] + j^2, {i, 1, 1230}, {j, 1, 100} ] ] ] ] nspQ[n_]:=Length[Select[IntegerPartitions[n,{2}],(PrimeQ[#[[1]]] && IntegerQ[ Sqrt[ #[[2]]]])||(PrimeQ[#[[2]]]&&IntegerQ[Sqrt[#[[1]]]])&]] == 0; Select[ Range[ 2200],nspQ] (* Harvey P. Dale, Jun 18 2021 *)
-
PARI
list(lim)=my(v=vectorsmall(lim\1,i,1),u=List(),b);forprime(p=2,#v, b=0; while((t=p+b++^2)<=#v,v[t]=0));for(i=1,#v,if(v[i],listput(u,i))); Vec(u) \\ Charles R Greathouse IV, May 29 2012
Comments