cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065446 Decimal expansion of Product_{k>=1} (1-1/2^k)^(-1).

Original entry on oeis.org

3, 4, 6, 2, 7, 4, 6, 6, 1, 9, 4, 5, 5, 0, 6, 3, 6, 1, 1, 5, 3, 7, 9, 5, 7, 3, 4, 2, 9, 2, 4, 4, 3, 1, 1, 6, 4, 5, 4, 0, 7, 5, 7, 9, 0, 2, 9, 0, 4, 4, 3, 8, 3, 9, 1, 3, 2, 9, 3, 5, 3, 0, 3, 1, 7, 5, 8, 9, 1, 5, 4, 3, 9, 7, 4, 0, 4, 2, 0, 6, 4, 5, 6, 8, 7, 9, 2, 7, 7, 4, 0, 2, 9, 4, 8, 4, 3, 3, 5, 3, 5, 0, 8, 8, 0
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Examples

			3.46274661945506361153795734292443116454075790290...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Maple
    evalf(1+sum(2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 22 2020
  • Mathematica
    N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ]
    RealDigits[1/QPochhammer[1/2, 1/2], 10, 100][[1]] (* Vaclav Kotesovec, Jun 22 2014 *)
  • PARI
    { default(realprecision, 2080); x=prodinf(k=1, 1/(1 - 1/2^k)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065446.txt", n, " ", d)) } \\ Harry J. Smith, Oct 19 2009
    
  • PARI
    prodinf(k=1, 1/(1-1/2^k)) \\ Michel Marcus, Feb 22 2020

Formula

Equals Sum_{n>=0} 1/A002884(n)*Product_{j=1..n} 2^j/(2^j-1). - Geoffrey Critzer, Jun 30 2017
Equals 1/QPochhammer(1/2, 1/2){infinity}. - _G. C. Greubel, Jan 18 2018
Equals 1 + Sum_{n>=1} 2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). - Robert FERREOL, Feb 22 2020
Equals 1 / A048651 (constant). - Hugo Pfoertner, Nov 28 2020
Equals Sum_{n>=0} A000041(n)/2^n. - Amiram Eldar, Jan 19 2021

Extensions

More terms from Robert G. Wilson v, Nov 19 2001
Further terms from Vladeta Jovovic, Dec 01 2001