A065449 a(n) = phi(Fibonacci(n)).
0, 1, 1, 1, 2, 4, 4, 12, 12, 16, 40, 88, 48, 232, 336, 240, 552, 1596, 1152, 4032, 3200, 5040, 17424, 28656, 12672, 60000, 120640, 89856, 188160, 514228, 288000, 1343296, 1217712, 1742400, 5697720, 6814080, 4396032, 23656320, 37691136
Offset: 0
Examples
a(9) = phi(F(9)) = phi(34) = phi(2 * 17) = 16.
References
- Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001, p. 413, Theorem 34.12.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..1408 (terms 0..466 from Harry J. Smith, terms 467..1000 from Charles R Greathouse IV)
- Blair Kelly, Fibonacci and Lucas Factorizations.
- Florian Luca, Arithmetic Functions of Fibonacci Numbers, The Fibonacci Quarterly, Vol. 37, No. 3 (1999), pp. 265-268.
- Joseph L. Pe, The Euler Phibonacci Sequence: A Problem Proposal with Software, 2001.
Programs
-
Magma
[0] cat [EulerPhi(Fibonacci(n)): n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
Maple
with(numtheory):with(combinat):a:=n->phi(fibonacci(n)): seq(a(n), n=0..38); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
Table[ EulerPhi[ Fibonacci[ n]], {n, 0, 46} ]
-
PARI
for(n=1,75,print1(eulerphi(fibonacci(n)),","))
-
PARI
{ for (n=0, 466, if (n, a=eulerphi(fibonacci(n)), a=0); write("b065449.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 20 2009
-
Sage
[euler_phi(fibonacci(n))for n in range(0,39)] # Zerinvary Lajos, Jun 06 2009
Formula
a(n) >= A065451(n), with equality if and only if n = 1, 2 or 3 (Luca, 1999). - Amiram Eldar, Jan 12 2022
Extensions
More terms from several correspondents, Nov 19 2001
Comments