cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A272040 a(n) = A000010(A000129(n)).

Original entry on oeis.org

1, 1, 4, 4, 28, 24, 156, 128, 784, 1120, 5740, 2880, 33460, 37128, 150080, 147456, 1128256, 931392, 6446016, 4677120, 28514304, 44450560, 224075664, 106168320, 1265644800, 1560708240, 5970392064, 5588803584, 44560482148, 33497856000, 255263424000, 196368924672, 1210784762880
Offset: 1

Views

Author

Altug Alkan, May 06 2016

Keywords

Examples

			a(3) = 4 because a(3) = A000010(A000129(3)) = A000010(5) = 4.
		

Crossrefs

Programs

  • Mathematica
    EulerPhi[LinearRecurrence[{2, 1}, {1, 2}, 33]] (* Amiram Eldar, Oct 21 2023 *)
  • PARI
    a000129(n) = ([2,1;1,0]^n)[2,1];
    a(n) = eulerphi(a000129(n));

A197218 a(n) = phi(Lucas(n)).

Original entry on oeis.org

1, 1, 2, 2, 6, 10, 6, 28, 46, 36, 80, 198, 132, 520, 560, 600, 2206, 3570, 1908, 9348, 12960, 11760, 25704, 63480, 50692, 150000, 180960, 208008, 609084, 1130304, 604800, 3010348, 4865280, 3920400, 8374344, 17836000, 13685760, 54018520, 58269200, 69600960
Offset: 0

Views

Author

T. D. Noe, Oct 12 2011

Keywords

Crossrefs

Cf. A000010, A000032, A065449, A065451, A197219 (Lucas(phi(n))).

Programs

  • Magma
    [EulerPhi(Lucas(n)): n in [0..40]]; // Vincenzo Librandi, Oct 13 2011
    
  • Mathematica
    Table[EulerPhi[LucasL[n]], {n, 0, 40}]
  • PARI
    for(n=0,30, print1(eulerphi(fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 22 2017

Formula

a(n) = A000010(A000032(n)).

A065451 a(n) = Fibonacci(phi(n)), a(0) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 8, 3, 8, 3, 55, 3, 144, 8, 21, 21, 987, 8, 2584, 21, 144, 55, 17711, 21, 6765, 144, 2584, 144, 317811, 21, 832040, 987, 6765, 987, 46368, 144, 14930352, 2584, 46368, 987, 102334155, 144, 267914296, 6765, 46368, 17711, 1836311903
Offset: 0

Views

Author

Joseph L. Pe, Nov 18 2001

Keywords

Examples

			a(13) = F(phi(13)) = F(12) = 144.
		

Crossrefs

Cf. A000010, A000045, A065449 (phi(Fibonacci(n))).

Programs

  • Magma
    [0] cat [Fibonacci(EulerPhi(n)): n in [1..50]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    Table[ Fibonacci[ EulerPhi[ n]], {n, 0, 60} ]
  • PARI
    for(n=1,75,print1(fibonacci(eulerphi(n)),","))
    
  • PARI
    { for (n=0, 1000, if (n, a=fibonacci(eulerphi(n)), a=0); write("b065451.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 20 2009
    

Formula

a(n) = A000045(A000010(n)).
a(n) <= A065449(n), with equality if and only if n = 1, 2 or 3 (Luca, 1999). - Amiram Eldar, Jan 12 2022

Extensions

More terms from several correspondents, Nov 19 2001

A197219 a(0) = 2, a(n) = Lucas(phi(n)) for n > 0.

Original entry on oeis.org

2, 1, 1, 3, 3, 7, 3, 18, 7, 18, 7, 123, 7, 322, 18, 47, 47, 2207, 18, 5778, 47, 322, 123, 39603, 47, 15127, 322, 5778, 322, 710647, 47, 1860498, 2207, 15127, 2207, 103682, 322, 33385282, 5778, 103682, 2207, 228826127, 322, 599074578, 15127, 103682, 39603
Offset: 0

Views

Author

T. D. Noe, Oct 12 2011

Keywords

Crossrefs

Cf. A000010, A000032, A065449, A065451, A197218 (phi(Lucas(n))).

Programs

  • Magma
    [2] cat [Lucas(EulerPhi(n)): n in [1..60]]; // Vincenzo Librandi, Oct 13 2011
    
  • Mathematica
    Table[LucasL[EulerPhi[n]], {n, 0, 50}]
  • PARI
    a(n) = if(n==0, 2, fibonacci(eulerphi(n)+1) + fibonacci(eulerphi(n)-1)) \\ G. C. Greubel, Dec 22 2017

Formula

a(n) = A000032(A000010(n)) for n > 0.

A075775 Numbers k that divide phi(Fibonacci(k)).

Original entry on oeis.org

1, 10, 11, 12, 14, 15, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93
Offset: 1

Views

Author

Benoit Cloitre, Oct 09 2002

Keywords

Comments

This sequence is infinite (Luca, 2002). - Amiram Eldar, Jan 12 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Divisible[EulerPhi[Fibonacci[#]],#]&] (* Harvey P. Dale, Jun 11 2015 *)

A181056 a(n) = prime(phi(Fibonacci(n))).

Original entry on oeis.org

2, 2, 2, 3, 7, 7, 37, 37, 53, 173, 457, 223, 1459, 2267, 1511, 4003, 13463, 9311, 38197, 29443, 49033, 193093, 333227, 136069, 746773, 1592923, 1157579, 2575043, 7594759, 4073233, 21225769, 19112567, 28016189, 98825561, 119488379, 75032131, 446083661, 729322973
Offset: 1

Views

Author

Carmine Suriano, Oct 01 2010

Keywords

Comments

Phi is Euler's totient function A000010.

Examples

			a(7) = 37 since prime(phi(fib(7))) = prime(phi(13)) = prime(12) = 37 is the 12th prime.
		

Crossrefs

Programs

  • Magma
    [NthPrime(EulerPhi(Fibonacci(n))): n in [1..40]]; // Vincenzo Librandi, Jun 23 2014
  • Maple
    A065449 := proc(n) numtheory[phi](combinat[fibonacci](n)) ; end proc: A181056 := proc(n) ithprime(A065449(n)) ; end proc: seq(A181056(n),n=1..32) ; # R. J. Mathar, Oct 02 2010
  • Mathematica
    Prime[EulerPhi[Fibonacci[Range[35]]]] (* Harvey P. Dale, Jun 22 2014 *)

Formula

a(n) = A000040(A065449(n)). - R. J. Mathar, Oct 02 2010

Extensions

a(1) inserted by R. J. Mathar, Oct 02 2010

A075776 Numbers k that do not divide phi(Fibonacci(k)).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 13, 16, 17, 19, 23, 31, 32, 43, 47, 57, 59, 61, 71, 79, 83, 87, 101, 109, 129, 137, 151, 161, 183, 187, 191, 199, 213, 221, 247, 251, 271, 311, 347, 381, 391, 393, 433, 493, 497, 499, 599, 749, 767, 827, 839, 913, 943, 983, 991, 1017, 1027
Offset: 1

Views

Author

Benoit Cloitre, Oct 09 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200], !Divisible[EulerPhi[Fibonacci[#]], #] &] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    isok(n) = eulerphi(fibonacci(n)) % n; \\ Michel Marcus, Nov 29 2013

Extensions

More terms from Michel Marcus, Nov 29 2013
a(43)-a(59) from Amiram Eldar, Jun 26 2022

A107647 Euler's totient function applied to tribonacci numbers.

Original entry on oeis.org

1, 1, 1, 2, 6, 12, 8, 20, 54, 148, 136, 144, 612, 1200, 1344, 2448, 10506, 16848, 13824, 22000, 83232, 148716, 205368, 377736, 920160, 1694088, 1880304, 3290112, 14839968, 22472640, 17805312, 42407136, 117876096, 327661128, 178588800, 561863168, 1604383200
Offset: 2

Views

Author

Roger L. Bagula, Jun 09 2005

Keywords

Crossrefs

Programs

  • Mathematica
    F[1] = 0; F[2] = 1; F[3] = 1; F[n__] := F[n] = F[n - 1] + F[n - 2] + F[n - 3]; Table[EulerPhi[F[n]], {n, 2, 50}]

Formula

a(n) = A000010(A000073(n)). - Amiram Eldar, Mar 02 2020

Extensions

First term 0 removed and offset corrected by Amiram Eldar, Mar 02 2020

A277261 Least k>0 such that phi(Fibonacci(n)) divides phi(Fibonacci(n+k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 3, 5, 11, 2, 13, 5, 6, 16, 17, 6, 16, 10, 14, 11, 23, 20, 25, 13, 22, 14, 29, 10, 31, 32, 22, 17, 35, 36, 37, 38, 26, 20, 41, 42, 43, 44, 18, 46, 47, 48, 49, 50, 51, 26, 53, 54, 55, 56, 57, 58, 59, 60, 61, 31, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 37, 75, 76, 77, 78, 79, 80, 81, 41
Offset: 1

Views

Author

Altug Alkan, Oct 07 2016

Keywords

Comments

a(n) <= n, since Fibonacci(n) divides Fibonacci(2n) and phi(x) divides phi(y) if x divides y. - Robert Israel, Dec 01 2016

Examples

			a(7) = 1 because phi(Fibonacci(7)) = phi(Fibonacci(8)) = 12.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses combinat, numtheory; local k, phin;
        phin:= phi(fibonacci(n));
        for k from 1 do if phi(fibonacci(n+k)) mod phin = 0 then return k fi od
    end proc;
    map(f, [$1..100]); # Robert Israel, Dec 01 2016
  • Mathematica
    Table[k = 1; While[Mod[EulerPhi@ Fibonacci[n + k], EulerPhi@ Fibonacci@ n] != 0, k++]; k, {n, 82}] (* Michael De Vlieger, Nov 23 2016 *)
  • PARI
    a(n) = {my(k=1); while (eulerphi(fibonacci(n+k)) % eulerphi(fibonacci(n)), k++); k;} \\ Michel Marcus, Nov 19 2016

A366773 a(n) = A000010(A001045(n)).

Original entry on oeis.org

1, 1, 2, 4, 10, 12, 42, 64, 108, 300, 682, 576, 2730, 5292, 6600, 16384, 43690, 46656, 174762, 240000, 455112, 1320352, 2796202, 2211840, 10125000, 22358700, 28256040, 66382848, 175923744, 178200000, 715827882, 1073741824, 1877540544, 5726448300, 10133592000
Offset: 1

Views

Author

Sean A. Irvine, Oct 21 2023

Keywords

Crossrefs

Formula

a(n) = phi(A001045(n)).
Showing 1-10 of 12 results. Next