A065455 Number of (binary) bit strings of length n in which no even block of 0's is followed by an odd block of 1's.
1, 2, 4, 7, 14, 25, 49, 89, 172, 316, 605, 1120, 2131, 3965, 7513, 14026, 26504, 49591, 93538, 175277, 330205, 619369, 1165892, 2188312, 4117045, 7730828, 14539447, 27309529, 51349169, 96468034, 181357036, 340753271, 640539142, 1203616849
Offset: 0
Examples
a(5) = 32-7 = 25 because 00111, 00101, 00100, 10010, 01001, 11001, 00001 are forbidden.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,1).
Crossrefs
Programs
-
GAP
a:=[1,2,4];; for n in [4..40] do a[n]:=3*a[n-2]+a[n-3]; od; a; # G. C. Greubel, May 31 2019
-
Magma
I:=[1,2,4]; [n le 3 select I[n] else 3*Self(n-2) +Self(n-3): n in [1..40]]; // G. C. Greubel, May 31 2019
-
Mathematica
LinearRecurrence[{0,3,1}, {1,2,4}, 40] (* G. C. Greubel, May 31 2019 *) a[n_,j_,m_]:=Sum[(2^(n+1)Cos[Pi r/(m+1)]^n Cot[Pi r/(2(m+1))] Sin[j Pi r/(m+1)])/(m+1),{r,1,m,2}] Table[a[n,3,8],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *) CoefficientList[Series[(1+x)^2/(1-3x^2-x^3),{x,0,50}],x] (* Harvey P. Dale, Jul 16 2021 *)
-
PARI
a(n)=([0,1,0;0,0,1;1,3,0]^n*[1;2;4])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
((1+x)^2/(1-3*x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 31 2019
Formula
G.f.: (1+x)^2/(1-3*x^2-x^3).
Comments