cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065455 Number of (binary) bit strings of length n in which no even block of 0's is followed by an odd block of 1's.

Original entry on oeis.org

1, 2, 4, 7, 14, 25, 49, 89, 172, 316, 605, 1120, 2131, 3965, 7513, 14026, 26504, 49591, 93538, 175277, 330205, 619369, 1165892, 2188312, 4117045, 7730828, 14539447, 27309529, 51349169, 96468034, 181357036, 340753271, 640539142, 1203616849
Offset: 0

Views

Author

Len Smiley, Nov 24 2001

Keywords

Comments

The limit of the ratio of successive terms as n increases can be shown to be 2*cos(Pi/9). In the opposite direction, as n -> -oo (see A052545), a(n+1)/a(n) approaches 2*cos(5*Pi/9). For example, a(-6)/a(-7) = -92/265, which is close to 2*cos(5*Pi/9). - Richard Locke Peterson, Apr 22 2019
Let P(n, j, m) = Sum_{r=1..m} (2^n*(1-(-1)^r)*cos(Pi*r/(m+1))^n*cot(Pi*r/(2*(m+1)))* sin(j*Pi*r/(m+1)))/(m+1) denote the number of paths of length n starting at the j-th node on the path graph P_m. We have a(n) = P(n, 3, 8). - Herbert Kociemba, Sep 17 2020

Examples

			a(5) = 32-7 = 25 because 00111, 00101, 00100, 10010, 01001, 11001, 00001 are forbidden.
		

Crossrefs

Cf. A061279 (forbids odd block 0's-odd block 1's), A065494, A065495, A065497.
Cf. A052545 (this is what we get if n takes negative values).

Programs

  • GAP
    a:=[1,2,4];; for n in [4..40] do a[n]:=3*a[n-2]+a[n-3]; od; a; # G. C. Greubel, May 31 2019
  • Magma
    I:=[1,2,4]; [n le 3 select I[n] else 3*Self(n-2) +Self(n-3): n in [1..40]]; // G. C. Greubel, May 31 2019
    
  • Mathematica
    LinearRecurrence[{0,3,1}, {1,2,4}, 40] (* G. C. Greubel, May 31 2019 *)
    a[n_,j_,m_]:=Sum[(2^(n+1)Cos[Pi r/(m+1)]^n Cot[Pi r/(2(m+1))] Sin[j Pi r/(m+1)])/(m+1),{r,1,m,2}]
    Table[a[n,3,8],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *)
    CoefficientList[Series[(1+x)^2/(1-3x^2-x^3),{x,0,50}],x] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    a(n)=([0,1,0;0,0,1;1,3,0]^n*[1;2;4])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    ((1+x)^2/(1-3*x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 31 2019
    

Formula

G.f.: (1+x)^2/(1-3*x^2-x^3).