cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A090992 Number of meaningful differential operations of the n-th order on the space R^7.

Original entry on oeis.org

7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, 3691, 6942, 13038, 24516, 46055, 86585, 162680, 305809, 574624, 1080106, 2029680, 3814941, 7169145, 13474502, 25322375, 47592650, 89441626, 168100324, 315917527, 593742597, 1115852904, 2097145317
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^6. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
Also (starting 4,7,...) the number of zig-zag paths from top to bottom of a rectangle of width 8, whose color is that of the top right corner. - Joseph Myers, Dec 23 2008

Crossrefs

Partial sums of pairwise sums of A065455.

Programs

  • GAP
    a:=[7,13,24,45];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2] - 2*a[n-3] - a[n-4]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 7; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 3, -2, -1}, {7, 13, 24, 45}, 32] (* Jean-François Alcover, Nov 25 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+4) = a(n+3) + 3*a(n+2) - 2*a(n+1) - a(n).
G.f.: x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)). - Colin Barker, Mar 08 2012

Extensions

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
More terms from Joseph Myers, Dec 23 2008

A065494 Number of (binary) bit strings in which no even length block of 0's is followed by an even length block of 1's.

Original entry on oeis.org

1, 2, 4, 8, 15, 30, 57, 112, 216, 420, 815, 1580, 3069, 5950, 11552, 22408, 43487, 84378, 163725, 317700, 616444, 1196172, 2321007, 4503704, 8738921, 16956954, 32903164, 63845000, 123884479, 240384374, 466440273, 905077080, 1756205088
Offset: 0

Views

Author

Len Smiley, Nov 24 2001

Keywords

Examples

			a(6)=64-7=57 because 000011, 001111, 001100, 001101, 100110, 010011, 110011 are forbidden.
		

Crossrefs

Cf. A061279 (forbids odd block 0's - odd block 1's), A065455, A065495, A065497.

Formula

O.g.f.: (1+x)^2/(1-3x^2-2x^3+x^4)

A065495 Number of (binary) bit strings of length n in which an odd length block of 0's is followed by an odd length block of 1's.

Original entry on oeis.org

1, 2, 6, 14, 32, 72, 156, 336, 712, 1496, 3120, 6464, 13328, 27360, 55968, 114144, 232192, 471296, 954816, 1931264, 3900800, 7869312, 15858432, 31928832, 64232704, 129128960, 259431936, 520941056, 1045557248, 2097616896
Offset: 2

Views

Author

Len Smiley, Nov 24 2001

Keywords

Examples

			a(4) = 6 because of 0100, 0101, 1010, 1101, 0111, 0001.
		

Crossrefs

Cf. A061279 [=2^n - a(n)], A065455, A065494, A065497.

Formula

G.f.: x^2/((1-2*x)*(1-2*x^2-2*x^3)).

A065497 Number of (binary) bit strings of length n having at least one even length block of 0's followed by an even length block of 1's.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 7, 16, 40, 92, 209, 468, 1027, 2242, 4832, 10360, 22049, 46694, 98419, 206588, 432132, 900980, 1873297, 3884904, 8038295, 16597478, 34205700, 70372728, 144550977, 296486538, 607301551, 1242406568, 2538762208, 5182207180
Offset: 0

Views

Author

Len Smiley, Nov 24 2001

Keywords

Examples

			a(6)=7 because of 000011, 001100, 001101, 001111, 010011, 100110, 110011.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^4/((1 - 2 x) (1 - 3 x^2 - 2 x^3 + x^4)), {x, 0, 33}], x] (* Georg Fischer, May 15 2019 *)

Formula

G.f.: x^4/((1 - 2*x)*(1 - 3*x^2 - 2*x^3 + x^4)). [Corrected by Georg Fischer, May 15 2019]

Extensions

Offset changed from 4 to 0 by Georg Fischer, May 15 2019

A217765 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=3 or if k-n >= 6, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 4, 6, 3, 0, 1, 5, 10, 9, 0, 0, 0, 6, 15, 19, 9, 0, 0, 0, 6, 21, 34, 28, 0, 0, 0, 0, 0, 27, 55, 62, 28, 0, 0, 0, 0, 0, 27, 82, 117, 90, 0, 0, 0, 0, 0, 0, 0, 109, 199, 207, 90, 0, 0, 0, 0, 0, 0, 0, 109, 308, 406, 297, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, ... row n=0
1, 2, 3, 4, 5, 6, 6, 0, 0, ... row n=1
1, 3, 6, 10, 15, 21, 27, 27, 0, 0, ... row n=2
0, 3, 9, 19, 34, 55, 82, 109, 109, 0, 0, ... row n=3
0, 0, 9, 28, 62, 117, 199, 308, 417, 417, 0, 0, ... row n=4
0, 0, 0, 28, 90, 207, 406, 714, 1131, 1548, 1548, 0, 0, ... row n=5
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 6
1, 3, 6, 10, 15, 21, 27, 27
3, 9, 19, 34, 55, 82, 109, 109
9, 28, 62, 117, 199, 308, 417, 417
28, 90, 207, 406, 714, 1131, 1548, 1548
90, 297, 703, 1417, 2548, 4096, 5644, 5644
297, 1000, 2417, 4965, 9061, 14705, 20349, 20349
1000, 3417, 8382, 17443, 32148, 52497, 72846, 72846
3417, 11799, 29242, 61390, 113887, 186733, 259579, 259579
11799, 41041, 102431, 216318, 403051, 662630, 922209, 922209
...
		

Crossrefs

Cf. Similar sequences: A216201, A216210, A216216, A216218, ...

Formula

T(n,n+4) = T(n,n+5) = A094829(n+2).
T(n,n+3) = A094834(n+1).
T(n,n+2) = A094833(n+1).
T(n,n+1) = A094832(n).
T(n,n) = A094831(n).
T(n+1,n) = T(n+2,n) = A094826(n).
sum(T(n-k,k), 0<=k<=n) = A065455(n).

A217733 Expansion of (1+x-x^2)/((1-x)*(1-3*x^2-x^3)).

Original entry on oeis.org

1, 2, 4, 8, 15, 29, 54, 103, 192, 364, 680, 1285, 2405, 4536, 8501, 16014, 30040, 56544, 106135, 199673, 374950, 705155, 1324524, 2490416, 4678728, 8795773, 16526601, 31066048, 58375577, 109724746, 206192780, 387549816, 728303087, 1368842229, 2572459078, 4834829775, 9086219464
Offset: 0

Views

Author

Philippe Deléham, Mar 22 2013

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-x^2)/((1-x)*(1-3*x^2-x^3)))); // Bruno Berselli, Mar 25 2013
    
  • Mathematica
    CoefficientList[Series[(1 + x - x^2)/((1 - x) (1 - 3 x^2 - x^3)), {x, 0, 40}], x] (* Bruno Berselli, Mar 25 2013 *)
  • Maxima
    makelist(coeff(taylor((1+x-x^2)/((1-x)*(1-3*x^2-x^3)), x, 0, n), x, n), n, 0, 40); /* Bruno Berselli, Mar 25 2013 */

Formula

G.f.: (1+x-x^2)/(1-x-3*x^2+2*x^3+x^4).
a(n) = sum( A216236(n-k,k), 0<=k<=n ).
a(n) = a(n-1)+3*a(n-2)-2*a(n-3)-a(n-4) for n>=4, a(0)=1, a(1)=2, a(2)=4, a(3)=8.
a(n+1) - a(n) = A065455(n).

A065506 Number of (binary) bit strings of length n having an even length block of 0's followed by an odd length block of 1's.

Original entry on oeis.org

1, 2, 7, 15, 39, 84, 196, 419, 928, 1965, 4227, 8871, 18742, 39032, 81481, 168606, 349011, 718371, 1477783, 3028412, 6200296, 12660171, 25823604, 52569417, 106908199, 217086287, 440402878, 892384788, 1806730377, 3654428154
Offset: 3

Views

Author

Len Smiley, Nov 26 2001

Keywords

Crossrefs

Cf. A065455.

Formula

G.f.: x^3/((1-2*x)*(1-3*x^2-x^3)).
a(n) = 2^n - A065455(n).
Showing 1-7 of 7 results.