cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A065492 Exponents in expansion of constant A065480 as a product zeta(n)^(-a(n)).

Original entry on oeis.org

0, 1, -1, 2, -4, 8, -14, 25, -48, 92, -168, 310, -590, 1117, -2092, 3945, -7500, 14264, -27102, 51627, -98694, 188934, -361936, 694565, -1335466, 2570965, -4954744, 9561045, -18473140, 35730392, -69176558, 134063535, -260062168, 504918960
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Inverse Euler transform of A077925 shifted by two places: 1, 0, 1, -1, 3, -5,... [From R. J. Mathar, Jul 26 2010]

Crossrefs

Cf. A065480.

Programs

  • Mathematica
    nmax = 40; s = {}; For[j = 1, j <= nmax, j++, AppendTo[s, j*(1 - (-2)^(j - 1))/3 - Sum[s[[d]]*(1 - (-2)^(j - d - 1))/3, {d, j - 1}]]]; Table[Sum[If[Divisible[j, d], MoebiusMu[j/d], 0]*s[[d]], {d, 1, j}]/j, {j, nmax}] (* Vaclav Kotesovec, Jun 13 2020 *)

Formula

a(n) ~ -(-1)^n * 2^(n+1) / n. - Vaclav Kotesovec, Jun 13 2020

Extensions

More terms from R. J. Mathar, Jul 26 2010

A065463 Decimal expansion of Product_{p prime} (1 - 1/(p*(p+1))).

Original entry on oeis.org

7, 0, 4, 4, 4, 2, 2, 0, 0, 9, 9, 9, 1, 6, 5, 5, 9, 2, 7, 3, 6, 6, 0, 3, 3, 5, 0, 3, 2, 6, 6, 3, 7, 2, 1, 0, 1, 8, 8, 5, 8, 6, 4, 3, 1, 4, 1, 7, 0, 9, 8, 0, 4, 9, 4, 1, 4, 2, 2, 6, 8, 4, 2, 5, 9, 1, 0, 9, 7, 0, 5, 6, 6, 8, 2, 0, 0, 6, 7, 7, 8, 5, 3, 6, 8, 0, 8, 2, 4, 4, 1, 4, 5, 6, 9, 3, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The density of A268335. - Vladimir Shevelev, Feb 01 2016
The probability that two numbers are coprime given that one of them is coprime to a randomly chosen third number. - Luke Palmer, Apr 27 2019

Examples

			0.7044422009991655927366033503...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1200; digits = 98; terms = 1200; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p*(p+1))) \\ Amiram Eldar, Mar 14 2021

Formula

From Amiram Eldar, Mar 05 2019: (Start)
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} rad(k), where rad(k) = A007947(k) is the squarefree kernel of k (Cohen).
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} uphi(k), where uphi(k) = A047994(k) is the unitary totient function (Sitaramachandrarao and Suryanarayana).
Equals lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/psi(k), where psi(k) = A001615(k) is the Dedekind psi function (Sita Ramaiah and Suryanarayana).
(End)
Equals A065473*A013661/A065480. - Luke Palmer, Apr 27 2019
Equals Sum_{k>=1} mu(k)/(k*sigma(k)), where mu is the Möbius function (A008683) and sigma(k) is the sum of divisors of k (A000203). - Amiram Eldar, Jan 14 2022
Equals 1/A065489. - R. J. Mathar, May 27 2025

A065464 Decimal expansion of Product_{p prime} (1 - (2*p-1)/p^3).

Original entry on oeis.org

4, 2, 8, 2, 4, 9, 5, 0, 5, 6, 7, 7, 0, 9, 4, 4, 4, 0, 2, 1, 8, 7, 6, 5, 7, 0, 7, 5, 8, 1, 8, 2, 3, 5, 4, 6, 1, 2, 1, 2, 9, 8, 5, 1, 3, 3, 5, 5, 9, 3, 6, 1, 4, 4, 0, 3, 1, 9, 0, 1, 3, 7, 9, 5, 3, 2, 1, 2, 3, 0, 5, 2, 1, 6, 1, 0, 8, 3, 0, 4, 4, 1, 0, 5, 3, 4, 8, 5, 1, 4, 5, 2, 4, 6, 8, 0, 6, 8, 5, 5, 4, 8, 0, 7, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Sum_{n <= x} A189021(n) ~ kx, where k is this constant. - Charles R Greathouse IV, Jan 24 2018
The probability that a number chosen at random is squarefree and coprime to another randomly chosen random (see Schroeder, 2009). - Amiram Eldar, May 23 2020, corrected Aug 04 2020

Examples

			0.428249505677094440218765707581823546...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.5.1, p. 110.
  • Manfred Schroeder, Number Theory in Science and Communication, 5th edition, Springer, 2009, page 59.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 98; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms+10]]; r[n_Integer] := LR[[n]]; (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n-1]/(n-1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 - (2*p-1)/p^3) \\ Amiram Eldar, Mar 12 2021

Formula

Equals A065463 divided by A013661. - R. J. Mathar, Mar 22 2011
Equals A065473 divided by A065480. - R. J. Mathar, May 02 2019
Equals (6/Pi^2)^2 * Product_{p prime} (1 + 1/(p^3 + p^2 - p - 1)) = 1.1587609... * (6/Pi^2)^2. - Amiram Eldar, May 23 2020
Equals lim_{m->oo} (1/m) * Sum_{k==1..m} (phi(k)/k)^2, where phi is the Euler totient function (A000010). - Amiram Eldar, Mar 12 2021

Extensions

More digits from Vaclav Kotesovec, Dec 18 2019

A078081 Continued fraction expansion of Product_{p prime} (1 - 1/(p^2+p-1)).

Original entry on oeis.org

0, 1, 2, 37, 1, 4, 23, 2, 15, 2, 1, 1, 1, 1, 1, 7, 4, 3, 2, 4, 1, 2, 1, 3, 1, 1, 1, 5, 1, 3, 2, 4, 1, 28, 2, 4, 7, 1, 1, 3, 23, 1, 5, 12, 8, 5, 1, 1, 1, 3, 1, 2, 3, 1, 2, 1, 27, 4, 3, 1, 1, 2, 1, 82, 2, 3, 10, 2, 3, 1, 2, 5, 2, 1, 1, 4, 6, 4, 1, 3, 1, 4, 18, 1, 2, 1, 2, 6, 2, 1, 1, 1, 2, 2, 5
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065480.

Programs

  • PARI
    contfrac(prodeulerrat(1 - 1/(p^2+p-1))) \\ Amiram Eldar, Mar 14 2021

Extensions

Offset changed by Andrew Howroyd, Jul 02 2024

A319597 Number of conjugacy classes for a non-abelian group of order p^3, where p is prime: a(n) = p^2 + p - 1 where p = prime(n).

Original entry on oeis.org

5, 11, 29, 55, 131, 181, 305, 379, 551, 869, 991, 1405, 1721, 1891, 2255, 2861, 3539, 3781, 4555, 5111, 5401, 6319, 6971, 8009, 9505, 10301, 10711, 11555, 11989, 12881, 16255, 17291, 18905, 19459, 22349, 22951, 24805, 26731, 28055, 30101, 32219, 32941, 36671
Offset: 1

Views

Author

Juan Lanfranco, Sep 23 2018

Keywords

Comments

For a non-abelian group of order p^3, we can use the class equation, p-group has nontrivial center result, group modulo center is cyclic implies group is abelian result, and the orbit-stabilizer theorem to give the number of conjugacy classes and number of elements in each conjugacy class.
The elements of A028387 with prime index.

Examples

			For p^3=2^3=8, the conjugacy classes of the Dihedral group = <r, s | r^4=1, s^2=1, srs=r^{-1}> are {1}, {r^2}, {r, r^3}, {s, sr^2}, {sr, sr^3}.
		

Crossrefs

Programs

  • Maple
    A028387:= n -> n^2+n-1:
    seq(A028387(ithprime(i)),i=1..50); # Robert Israel, Dec 23 2018
  • Mathematica
    f[n_]:=n^2 + n - 1 ; f[Prime[Range[43]]] (* Amiram Eldar, Nov 21 2018 *)
  • PARI
    a(n) = {my(p = prime(n)); p^2 + p - 1; } \\ Amiram Eldar, Nov 07 2022

Formula

From Amiram Eldar, Nov 07 2022: (Start)
a(n) = A028387(A000040(n)-1).
Product_{n>=1} (1 + 1/a(n)) = A065489.
Product_{n>=1} (1 - 1/a(n)) = A065480. (End)
Showing 1-5 of 5 results.