cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A120692 Primitive elements of A065607.

Original entry on oeis.org

20, 156, 255, 609, 1295, 2385, 4015, 4095, 6545, 6984, 9919, 9999, 12656, 14385, 14625, 20724, 20735, 28545, 32424, 37791, 38335, 38415, 48464, 50369, 50609, 64911, 65455, 69804, 82225, 83265, 83505, 96016, 97056, 97636, 102575, 104351
Offset: 1

Views

Author

Keywords

Examples

			156 is part of the triple 60,65,156. Although 600 is part of the primitive triple 168,175,600, it is excluded because it is a multiple of 20.
		

Crossrefs

A120693 Elements of A065607 from primitive triples.

Original entry on oeis.org

20, 156, 255, 600, 609, 1295, 1640, 2385, 3640, 3660, 4015, 4095, 6545, 6984, 7120, 7140, 9919, 9999, 12656, 14385, 14625, 20280, 20724, 20735, 20860, 20880, 28305, 28545, 31980, 32424, 32560, 32580, 37791, 38335, 38415, 48464, 48620, 50369
Offset: 1

Views

Author

Keywords

Examples

			156 is part of the triple 60,65,156. 600 is part of the primitive triple 168,175,600; it is included here but excluded from A120692.
		

Crossrefs

A299170 List of integer triples (b,c,d) where b > c > d are coprime and 1/b^2 + 1/c^2 + 1/d^2 = 1/r^2 and r is an integer, ordered by b then c.

Original entry on oeis.org

156, 65, 45, 156, 80, 65, 255, 136, 90, 255, 160, 136, 609, 580, 315, 609, 580, 560, 1295, 444, 315, 1295, 560, 444, 1428, 221, 91, 1560, 1547, 170, 1640, 369, 270, 1640, 480, 369, 1833, 884, 799, 1924, 663, 629, 2385, 1484, 945, 2385, 1680, 1484, 2925, 1100, 429
Offset: 1

Views

Author

Ralf Steiner, Feb 04 2018

Keywords

Comments

Conjectures:
12|r, 3|b or 3|c or 3|d, 4|b or 4|c or 4|d.
No term is powerful (A001694) or square (A000290).

Examples

			1/156^2 + 1/65^2 + 1/45^2 = 1/36^2 = 1/(12*3)^2.
As an array, sequence begins:
   156,   65,   45
   156,   80,   65,
   255,  136,   90,
   255,  160,  136,
   609,  580,  315,
   609,  580,  560,
  1295,  444,  315,
  1295,  560,  444,
  1428,  221,   91,
  1560, 1547,  170,
  1640,  369,  270,
  1640,  480,  369,
  1833,  884,  799,
  1924,  663,  629,
  ...
		

Crossrefs

Programs

  • Mathematica
    n = 1500; lst = {}; Do[Do[Do[If[GCD[b, c, d] == 1,
    r = Sqrt[1/(1/b^2 + 1/c^2 + 1/d^2)];
      If[IntegerQ[r], lst = AppendTo[lst, {b, c, d}]]], {d, c - 1}],
    {c, b - 1}], {b, n}]; lst//Flatten

Formula

a(n) > 1.

Extensions

a(28)-a(51) from Giovanni Resta, Feb 06 2018

A317095 a(n) = 40*n.

Original entry on oeis.org

0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360, 1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880
Offset: 0

Views

Author

Felix Fröhlich, Sep 07 2018

Keywords

Comments

a(n) is equal to the freshwater zone below sea level for a water table of elevation n above sea level in a simplified freshwater-saltwater interface in a coastal water-table aquifer (cf. Barlow, 2003, p. 14, eq. (2) and p. 15, Fig. B-1 and B-2).
From Bruno Berselli, Sep 10 2018: (Start)
After 0, subsequence of A065607: 1/a(n)^2 + 1/(30*n)^2 = 1/(24*n)^2, with n > 0 and a(n) > 30*n.
Also, all positive terms belong to A049094: 2^(40*n)-1 = 1024^(4*n)-1 and (25*41-1)^(4*n)-1 is divisible by 25. (End)

Crossrefs

Row n = 40 of A004247. Intersection of A008587 and A008590.
After 0, subsequence of A005101.

Programs

  • Mathematica
    Table[40 n, {n, 0, 50}] (* or *)
    LinearRecurrence[{2, -1}, {0, 40}, 50] (* or *)
    CoefficientList[Series[40*x/(1 - x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 07 2018 *)
  • PARI
    a(n) = 40*n
    
  • PARI
    a(n) = if(n==0, 0, if(n==1, 40, 2*a(n-1)-a(n-2)))
    
  • PARI
    concat(0, Vec(40*x/(1-x)^2 + O(x^60)))

Formula

O.g.f.: 40*x/(1 - x)^2.
E.g.f.: 40*x*exp(x). - Bruno Berselli, Sep 10 2018
a(n) = 2*a(n - 1) - a(n - 2) for n > 1. - Stefano Spezia, Sep 07 2018
a(n) = A008586(A008592(n)) = 4*A008592(n).
a(n) = A010692(n)*A008586(n) = 10*A008586(n).
a(n) = A008602(A005843(n)) = 20*A005843(n).
a(n) = A007395(n)*A008602(n) = 2*A008602(n).

A065709 Reduced sequence related to reciprocal Pythagorean triples: 1/a(n)^2 + 1/k^2 = 1/j^2 has an integer solution (k,j) with k

Original entry on oeis.org

156, 255, 312, 468, 510, 609, 624, 765, 936, 1092, 1218, 1248, 1275, 1295, 1404, 1530, 1716, 1785, 1827, 1872, 2028, 2184, 2295, 2385, 2436, 2496, 2550, 2590, 2652, 2805, 2808, 2964, 3045, 3276, 3315, 3432, 3570, 3588, 3654, 3744, 3825, 3885, 4015, 4056, 4095
Offset: 1

Views

Author

Len Smiley, Dec 04 2001

Keywords

Examples

			a(10)=1218: 1/a(10)^2 + 1/1160^2 = 1/840^2
		

Crossrefs

A065607 (includes multiples of 20)

Extensions

Offset corrected and more terms from Sean A. Irvine, Sep 09 2023
Showing 1-5 of 5 results.