cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A285332 a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 8, 15, 12, 14, 27, 10, 25, 7, 16, 210, 45, 35, 18, 105, 28, 462, 81, 21, 20, 154, 125, 30, 49, 11, 32, 10659, 420, 910, 75, 78, 175, 33, 24, 3094, 315, 385, 56, 780045, 924, 374, 243, 110, 63, 55, 40, 4389, 308, 170170, 625, 1155, 60, 286, 343, 42, 121, 13, 64, 54230826, 31977, 28405, 630, 1330665, 1820, 714
Offset: 0

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A019565(n), and each right hand child as A065642(n), when the parent node contains n >= 2:
1
|
...................2...................
3 4
6......../ \........9 5......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
15 12 14 27 10 25 7 16
210 45 35 18 105 28 462 81 21 20 154 125 30 49 11 32
etc.
Where will 38 appear in this tree? It is a reasonable assumption that by iterating A087207 starting from 38, as A087207(38) = 129, A087207(129) = 8194, A087207(8194) = 1501199875790187, ..., we will eventually hit a prime A000040(k), most likely with a largish index k. This prime occurs at the penultimate edge at right, as a(A000918(k)) = a((2^k)-2), and thus 38 occurs somewhere below it as a(m) = 38, m > k. All the numbers that share prime factors with 38, namely 76, 152, 304, 608, 722, ..., occur similarly late in this tree, as they form the rightward branch starting from 38. Alternatively, by iterating A285330 (each iteration moves one step towards the root) starting from 38, we might instead first hit some power of 3, or say, one of the terms of A033845 (the rightward branch starting from 6), in which case the first prime encountered would be a(2)=3 and 38 would appear on the left-hand side instead of the right-hand side subtree.
As long as it remains conjecture that A019565 has no cycles, it is certainly also an open question whether this is a permutation of the natural numbers: If A019565 has any cycles, then neither any of the terms in those cycles nor any A065642-trajectories starting from those terms (that is, numbers sharing same prime factors) may occur in this tree.
Sequence exhibits some outrageous swings, for example, a(703) = 224, but a(704) is 1427 decimal digits (4739 binary digits) long, thus it no longer fits into a b-file.
However, the scatter plot of A286543 gives some flavor of the behavior of this sequence even after that point. - Antti Karttunen, Dec 25 2017

Crossrefs

Inverse: A285331.
Compare also to permutation A285112 and array A285321.

Programs

  • Mathematica
    Block[{a = {1, 2}}, Do[AppendTo[a, If[EvenQ[i], Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[a[[i/2 + 1]], 2], If[# == 1, 1, Function[{n, c}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &]] @@ {#, Times @@ FactorInteger[#][[All, 1]]}] &[a[[(i - 1)/2 + 1]] ] ]], {i, 2, 70}]; a] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); };
    for(n=0, 4095, write("b285332.txt", n, " ", A285332(n)));
    
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def a(n):
        if n<2: return n + 1
        if n%2==0: return a019565(a(n//2))
        else: return a065642(a((n - 1)//2))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    ;; With memoization-macro definec.
    (definec (A285332 n) (cond ((<= n 1) (+ n 1)) ((even? n) (A019565 (A285332 (/ n 2)))) (else (A065642 (A285332 (/ (- n 1) 2))))))
    

Formula

a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).
For n >= 0, a(2^n) = A109162(2+n). [The left edge of the tree.]
For n >= 0, a(A000225(n)) = A000079(n). [Powers of 2 occur at the right edge of the tree.]
For n >= 2, a(A000918(n)) = A000040(n). [And the next vertices inwards contain primes.]
For n >= 2, a(A036563(1+n)) = A001248(n). [Whose right children are their squares.]
For n >= 0, a(A055010(n)) = A000244(n). [Powers of 3 are at the rightmost edge of the left subtree.]
For n >= 2, a(A129868(n-1)) = A062457(n).
A048675(a(n)) = A285333(n).
A046523(a(n)) = A286542(n).

A285321 Square array A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)), read by descending antidiagonals.

Original entry on oeis.org

2, 3, 4, 6, 9, 8, 5, 12, 27, 16, 10, 25, 18, 81, 32, 15, 20, 125, 24, 243, 64, 30, 45, 40, 625, 36, 729, 128, 7, 60, 75, 50, 3125, 48, 2187, 256, 14, 49, 90, 135, 80, 15625, 54, 6561, 512, 21, 28, 343, 120, 225, 100, 78125, 72, 19683, 1024
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

A permutation of the natural numbers > 1.
Otherwise like array A284311, but the columns come in different order.

Examples

			The top left 12x6 corner of the array:
   2,   3,  6,     5,  10,  15,  30,      7,  14,  21,  42,   35
   4,   9, 12,    25,  20,  45,  60,     49,  28,  63,  84,  175
   8,  27, 18,   125,  40,  75,  90,    343,  56, 147, 126,  245
  16,  81, 24,   625,  50, 135, 120,   2401,  98, 189, 168,  875
  32, 243, 36,  3125,  80, 225, 150,  16807, 112, 441, 252, 1225
  64, 729, 48, 15625, 100, 375, 180, 117649, 196, 567, 294, 1715
		

Crossrefs

Transpose: A285322.
Cf. A008479 (index of the row where n is located), A087207 (of the column).
Cf. arrays A284311, A285325, also A285332.

Programs

  • Mathematica
    a065642[n_] := Module[{k}, If[n == 1, Return[1], k = n + 1; While[ EulerPhi[k]/k != EulerPhi[n]/n, k++]]; k];
    A[1, k_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[ IntegerDigits[k, 2]]];
    A[n_ /; n > 1, k_] := A[n, k] = a065642[A[n - 1, k]];
    Table[A[n - k + 1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 17 2019 *)
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k))
    for n in range(1, 11): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    (define (A285321 n) (A285321bi (A002260 n) (A004736 n)))
    (define (A285321bi row col) (if (= 1 row) (A019565 col) (A065642 (A285321bi (- row 1) col))))
    

Formula

A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)).
For all n >= 2: A(A008479(n), A087207(n)) = n.

A285331 Inverse for A285332: a(1) = 0, a(2) = 1, a(A019565(n)) = 2*a(n), a(A065642(n)) = 1 + 2*a(n).

Original entry on oeis.org

0, 1, 2, 3, 6, 4, 14, 7, 5, 12, 30, 9, 62, 10, 8, 15, 126, 19, 254, 25, 24, 252, 510, 39, 13, 76, 11, 21, 1022, 28, 2046, 31, 38, 316, 18, 79, 4094
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017, comments edited Apr 19 2017

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
For the question whether this sequence and A285332 are permutations of natural numbers, see comments in A285332 and the conjecture stated in A019565.
As a practical problem, it seems next-to-impossible to compute even the value of a(38). Even though we know that 38 certainly is not in a finite cycle of A019565, because A048675(38) = 129, A048675(129) = 8194 and A048675(8194) = 4503599627370561 which factorizes as 3^2 * 37 * 71 * 190483425427 (thus is not squarefree and A285320(38) = 3), the value of a(38) is most likely so huge that it will not fit into the data section or even into a b-file. The same problem applies to all numbers that share prime factors with 38, namely 76, 152, 304, 608, 722, ...
Terms a(39) .. a(61) are [632, 51, 8190, 60, 16382, 505, 17, 72057594037927932, 32766, 159, 29, 103, 1016, 153, 65534, 319, 50, 43, 16376, 131014, 131070, 57, 262142].
The name is slightly misleading. The given definition of a(n) is not always very helpful to compute the terms (cf. example of n = 38), it is actually not clear whether the sequence is well defined. - M. F. Hasler, Mar 01 2018

Examples

			a(1) = 0 and a(2) = 1 by definition.
a(3) = a(prime(2)) = a(A019565(2^1)) = 2*a(2) = 2.
a(4) = a(2^2) = a(A065642(2)) = 1 + 2*a(2) = 3.
a(5) = a(prime(3)) = a(A019565(2^2)) = 2*a(4) = 6.
a(9) = a(3^2) = a(A065642(3)) = 1 + 2*a(3) = 5.
a(10) = a(2*5) = a(prime(1)*prime(3)) = a(A019565(2^0+2^2)) = 2*a(1+4) = 12.
To compute a(38), write 38 = prime(1)*prime(8) = A019565(2^7+2^0), so a(38) = 2*a(129). To compute this, use 129 = prime(2)*prime(14) = A019565(2^13+2^1), so a(129) = 2*a(8194). But 8194 = prime(1)*prime(7)*prime(53) = A019565(2^0+2^6+2^52), so a(8194) = 2*a(4503599627370561)...
		

Crossrefs

Inverse: A285332.
Compare also to permutation A285111.

Programs

Formula

a(1) = 0, a(2) = 1, and for n > 2, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A048675(n)), otherwise a(n) = 1 + 2*a(A285328(n)).
For all n >= 0, a(A285332(n)) = n.

A284342 Numbers n such that A065642(n) < n*lpf(n), where lpf = least prime factor (A020639).

Original entry on oeis.org

12, 18, 24, 36, 40, 45, 48, 50, 54, 56, 60, 63, 72, 75, 80, 84, 90, 96, 98, 100, 108, 112, 120, 126, 132, 135, 144, 147, 150, 156, 160, 162, 168, 175, 176, 180, 189, 192, 196, 198, 200, 204, 208, 216, 224, 225, 228, 234, 240, 242, 245, 250, 252, 264, 270, 275, 276, 280, 288, 294, 297, 300
Offset: 1

Views

Author

Gionata Neri, Mar 25 2017

Keywords

Comments

Numbers n for which A065642(n) < A285109(n). Positions of terms > 1 in A285337. - Antti Karttunen, Apr 19 2017
For any n in this sequence, k*n is also in this sequence. No term is squarefree. For any distinct primes p and q with p > q, p^2*q and p*q^(ceiling(log_q(p))) are in this sequence. - Charlie Neder, Oct 29 2018

Crossrefs

Cf. A007947, A020639, A065642, A285100 (complement), A285109, A285337.

Programs

  • Mathematica
    Select[Range[2, 300], Function[{n, c, lpf}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &] < n lpf] @@ {#1, Times @@ #2, #2[[1]]} & @@ {#, FactorInteger[#][[All, 1]]} &] (* Michael De Vlieger, Oct 31 2018 *)
  • PARI
    for(n=1,300,for(k=1,n^2-n,a=factorback(factorint(n)[,1]); b=factorback(factorint(n+k)[,1]); c=vecmin(factor(n)[,1]); if(a==b&&n+k
    				
  • PARI
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    isA284342(n) = (A065642(n) < n*A020639(n));
    n=0; k=1; while(k <= 10000, n=n+1; if(isA284342(n),write("b284342.txt", k, " ", n);k=k+1));
    \\ Antti Karttunen, Apr 19 2017
    
  • Python
    from operator import mul
    from sympy import primefactors
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    print([n for n in range(10, 301) if a065642(n)Indranil Ghosh, Apr 20 2017

A285111 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(A005117(1+n)) = 2*a(n), a(A065642(n)) = 1 + 2*a(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 5, 12, 16, 13, 14, 10, 24, 15, 32, 27, 26, 25, 28, 20, 48, 55, 9, 30, 11, 21, 64, 54, 52, 31, 50, 56, 40, 111, 96, 110, 18, 51, 60, 22, 42, 41, 49, 128, 108, 223, 17, 103, 104, 61, 62, 447, 100, 43, 112, 80, 222, 109, 192, 220, 57, 63, 36, 102, 120, 113, 44, 84, 82, 895, 98, 256, 99, 221, 216, 446, 34, 207, 23
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Inverse: A285112.
Similar or related permutations: A243343, A243345, A277695, A284571.

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a285328(n):
        if core(n) == n: return 1
        k=n - 1
        while k>0:
            if a007947(k) == a007947(n): return k
            else: k-=1
    def a013928(n): return sum([1 for i in range(1, n) if core(i) == i])
    def a(n):
        if n<3: return n - 1
        if core(n)==n: return 2*a(a013928(n))
        else: return 1 + 2*a(a285328(n))
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Apr 17 2017

Formula

a(1) = 0, a(2) = 1, and for n > 2, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A013928(n)), otherwise a(n) = 1 + 2*a(A285328(n)).

A285112 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 8, 7, 25, 14, 27, 10, 12, 13, 16, 11, 49, 39, 125, 22, 28, 42, 81, 15, 20, 19, 18, 21, 169, 26, 32, 17, 121, 79, 343, 65, 117, 205, 625, 35, 44, 43, 56, 69, 84, 133, 243, 23, 45, 33, 40, 31, 361, 30, 24, 34, 63, 277, 2197, 41, 52, 53, 64, 29, 289, 199, 1331, 130, 6241, 563, 2401, 106, 325, 193, 351, 335, 1025, 1030, 3125, 58
Offset: 0

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A005117(1+n), and each right hand child as A065642(n), when the parent node contains n >= 2:
1
|
...................2...................
3 4
5......../ \........9 6......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 25 14 27 10 12 13 16
11 49 39 125 22 28 42 81 15 20 19 18 21 169 26 32
etc.

Crossrefs

Inverse: A285111.
Similar or related permutations: A243344, A243346, A252753, A277696, A284572.
Cf. also arrays A284457 & A284311.

Formula

a(0) = 1, a(1) = 2, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(a(n)).

A284571 Permutation of natural numbers: a(1) = 1, a(A005117(1+n)) = 2*a(n), a(A065642(1+n)) = 1 + 2*a(n).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 9, 5, 12, 32, 17, 18, 10, 24, 33, 64, 65, 34, 11, 36, 20, 48, 129, 7, 66, 19, 37, 128, 130, 68, 49, 22, 72, 40, 97, 96, 258, 14, 69, 132, 38, 74, 73, 21, 256, 260, 81, 13, 29, 136, 15, 98, 521, 44, 39, 144, 80, 194, 257, 192, 516, 23, 137, 28, 138, 264, 45, 76, 148, 146, 197, 42, 512, 147, 193, 520, 162, 26, 27
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Crossrefs

Inverse: A284572.
Similar or related permutations: A243343, A243345, A277695, A285111.

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a285328(n):
        if core(n) == n: return 1
        k=n - 1
        while k>0:
            if a007947(k) == a007947(n): return k
            else: k-=1
    def a013928(n): return sum(1 for i in range(1, n) if core(i) == i)
    def a(n):
        if n==1: return 1
        if core(n)==n: return 2*a(a013928(n))
        else: return 1 + 2*a(a285328(n) - 1)
    [a(n) for n in range(1, 121)] # Indranil Ghosh, Apr 17 2017

Formula

a(1) = 1, for n > 1, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A013928(n)), otherwise a(n) = 1 + 2*a(A285328(n)-1).

A284572 Permutation of natural numbers: a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(1+a(n)).

Original entry on oeis.org

1, 2, 4, 3, 9, 6, 25, 5, 8, 14, 20, 10, 49, 39, 52, 7, 12, 13, 27, 22, 45, 33, 63, 15, 121, 79, 80, 65, 50, 85, 2809, 11, 16, 19, 169, 21, 28, 42, 56, 35, 529, 73, 92, 55, 68, 103, 128, 23, 32, 199, 244, 130, 100, 131, 243, 106, 132, 82, 153, 139, 172, 4619, 5620, 17, 18, 26, 289, 31, 40, 277, 340, 34, 44, 43, 841, 69, 1849, 91, 171, 58, 48
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A005117(1+n), and each right hand child as A065642(1+n), when the parent node contains n:
1
................../ \..................
2 4
3......../ \........9 6......../ \........25
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 8 14 20 10 49 39 52
7 12 13 27 22 45 33 63 15 121 79 80 65 50 85 2809
etc.
Compare to A285112.

Crossrefs

Inverse: A284571.
Similar or related permutations: A243344, A243346, A277696, A285112.

Formula

a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(1+a(n)).

A285100 Numbers k for which A065642(k) = A285109(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Crossrefs

Complement: A284342.
Positions of ones in A285337.
Subsequences: A000961, A005117.

Programs

  • PARI
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    isA285100(n) = (A065642(n) == n*A020639(n));
    n=0; k=1; while(k <= 10000, n=n+1; if(isA285100(n),write("b285100.txt", k, " ", n);k=k+1));
    
  • Python
    from operator import mul
    from sympy import primefactors
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a020639(n): return 1 if n==1 else primefactors(n)[0]
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n += r
        while a007947(n)!=r:
            n+=r
        return n
    print([n for n in range(1, 102) if a065642(n) == n*a020639(n)]) # Indranil Ghosh, May 24 2017
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A285100 (MATCHING-POS 1 1 (lambda (n) (= (A065642 n) (A285109 n)))))
    

A285327 Row 3 of A285325: a(n) = A048675(A065642(A065642(A019565(n)))).

Original entry on oeis.org

0, 3, 6, 5, 12, 7, 10, 9, 24, 11, 18, 13, 20, 15, 18, 17, 48, 19, 22, 21, 36, 23, 26, 25, 40, 27, 34, 29, 36, 31, 34, 33, 96, 35, 38, 37, 68, 39, 42, 41, 72, 43, 50, 45, 52, 47, 50, 49, 80, 51, 54, 53, 68, 55, 58, 57, 72, 59, 66, 61, 68, 63, 66, 65, 192, 67, 70, 69, 132, 71, 74, 73, 136, 75, 82, 77, 84, 79, 82, 81, 144, 83, 86, 85, 100, 87, 90, 89
Offset: 0

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Crossrefs

Row 3 of A285325 (after the initial zero).

Programs

Formula

Showing 1-10 of 41 results. Next