A065766 Sum of divisors of twice a square number, divided by three.
1, 5, 13, 21, 31, 65, 57, 85, 121, 155, 133, 273, 183, 285, 403, 341, 307, 605, 381, 651, 741, 665, 553, 1105, 781, 915, 1093, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2541, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 3751, 2765, 2257, 4433, 2801
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
GAP
List([1..50],n->Sigma(2*n^2))/3; # Muniru A Asiru, Dec 07 2018
-
Magma
[SumOfDivisors(2*n^2)/3: n in [1..60]]; // Vincenzo Librandi, Dec 07 2018
-
Maple
with(numtheory): [sigma(2*n^2)/3$n=1..50]; # Muniru A Asiru, Dec 07 2018
-
Mathematica
Array[DivisorSigma[1, 2 #^2]/3 &, 49] (* Michael De Vlieger, Dec 06 2018 *)
-
PARI
a(n) = { sigma(2*n^2)/3 } \\ Harry J. Smith, Oct 30 2009
-
Python
from sympy import divisor_sigma for n in range(1,50): print(divisor_sigma(2*n**2,1)/3) # Stefano Spezia, Dec 07 2018
Formula
Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(2*e+1)-1)/(p-1) for an odd prime p. - Vladeta Jovovic, Dec 01 2001
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.487175... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/(zeta(2*s-2)*(1+2/2^s)). - Amiram Eldar, Feb 12 2023