cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065766 Sum of divisors of twice a square number, divided by three.

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 121, 155, 133, 273, 183, 285, 403, 341, 307, 605, 381, 651, 741, 665, 553, 1105, 781, 915, 1093, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2541, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 3751, 2765, 2257, 4433, 2801
Offset: 1

Views

Author

Labos Elemer, Nov 19 2001

Keywords

Crossrefs

Programs

  • GAP
    List([1..50],n->Sigma(2*n^2))/3; # Muniru A Asiru, Dec 07 2018
    
  • Magma
    [SumOfDivisors(2*n^2)/3: n in [1..60]]; // Vincenzo Librandi, Dec 07 2018
    
  • Maple
    with(numtheory): [sigma(2*n^2)/3$n=1..50]; # Muniru A Asiru, Dec 07 2018
  • Mathematica
    Array[DivisorSigma[1, 2 #^2]/3 &, 49] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n) = { sigma(2*n^2)/3 } \\ Harry J. Smith, Oct 30 2009
    
  • Python
    from sympy import divisor_sigma
    for n in range(1,50): print(divisor_sigma(2*n**2,1)/3) # Stefano Spezia, Dec 07 2018

Formula

Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(2*e+1)-1)/(p-1) for an odd prime p. - Vladeta Jovovic, Dec 01 2001
a(n) = sigma(2*n^2)/3 = A000203(2*A000290(n))/3 = A065765(n)/3.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.487175... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/(zeta(2*s-2)*(1+2/2^s)). - Amiram Eldar, Feb 12 2023