cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065897 The a(n)-th composite number is twice the n-th prime.

Original entry on oeis.org

1, 2, 5, 7, 13, 16, 22, 25, 31, 41, 43, 52, 59, 62, 69, 78, 87, 91, 101, 107, 111, 120, 127, 137, 149, 155, 159, 166, 170, 177, 199, 206, 215, 218, 235, 239, 248, 259, 266, 277, 286, 289, 306, 309, 316, 319, 339, 359, 366, 369, 375, 386, 389, 406, 416, 426, 438
Offset: 1

Views

Author

Labos Elemer, Nov 28 2001

Keywords

Comments

Also the least k such that the n-th primorial (A002110) is a divisor of the k-th compositorial (A036691). - Reinhard Zumkeller, Sep 03 2002

Examples

			a(7) = 22 because twice the 7th prime (2*17 = 34) is the 22nd composite number: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34.
		

Crossrefs

Cf. A000720, A002110, A002808, A036691, A100484 (even semiprimes).

Programs

  • Magma
    A065897:= func< n | 2*NthPrime(n) -1 -#PrimesUpTo(2*NthPrime(n)) >;
    [A065897(n): n in [1..130]]; // G. C. Greubel, Aug 24 2024
    
  • Maple
    A065897:=n->2*ithprime(n)-(numtheory[pi](2*ithprime(n)))-1: seq(A065897(n), n=1..100); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    Table[2*Prime[n]-(PrimePi[2*Prime[n]])-1, {n, 128}]
  • PARI
    { for (n=1, 1000, f=2*prime(n); a=f - primepi(f) - 1; write("b065897.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 04 2009
    
  • SageMath
    def A065897(n): return 2*nth_prime(n) -prime_pi(2*nth_prime(n)) -1
    [A065897(n) for n in range(1,131)] # G. C. Greubel, Aug 24 2024

Formula

a(n) = 2*prime(n) - (pi(2*prime(n))) - 1, where pi = A000720.