A065942 Central column of triangle A065941.
1, 1, 3, 4, 15, 21, 84, 120, 495, 715, 3003, 4368, 18564, 27132, 116280, 170544, 735471, 1081575, 4686825, 6906900, 30045015, 44352165, 193536720, 286097760, 1251677700, 1852482996, 8122425444, 12033222880, 52860229080, 78378960360
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 4*x^3 + 15*x^4 + 21*x^5 + 84*x^6 + 120*x^7 + ... - _Michael Somos_, Jun 23 2018
References
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001 (Chapter 14)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2416
- Henry W. Gould, A Variant of Pascal's Triangle, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, pp. 257-271; Corrections.
Programs
-
GAP
List([0..40],n->Binomial(n+Int(n/2),n)); # Muniru A Asiru, Apr 28 2018
-
Mathematica
Array[Binomial[# + Floor[#/2], #] &, 30, 0] (* Michael De Vlieger, Apr 27 2018 *)
-
PARI
a(n) = binomial(n+n\2, n); \\ Altug Alkan, Apr 24 2018
Formula
a(n) = binomial(2n-floor((n+1)/2), floor(n/2)).
a(n+1) = Sum_{k=0..ceiling(n/2)} binomial(n+k, k). - Benoit Cloitre, Mar 06 2004
a(n) = binomial(n+floor(n/2), n). - Paul Barry, May 18 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1+k, k). - Paul Barry, Jul 06 2004
a(2n-1) = binomial(3n-3,n-1); a(2n) = binomial(3n-2,n-1). - John Molokach, Jul 08 2013
G.f.: A(x) = x*(d/dx)[log(S(x)-1)] = x*[(d/dx) S(x)]/[S(x)-1], where S(x) is the g.f. of A047749. - Vladimir Kruchinin, Jun 12 2014.
Conjecture: 8*n*(n-1)*a(n) -36*(n-1)*(n-3)*a(n-1) +6*(-9*n^2+18*n-14)*a(n-2) +27*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Jun 13 2014
0 = a(n)*(+281138850*a(n+2) +729089100*a(n+3) -77071527*a(n+4) -134472793*a(n+5)) +a(n+1)*(+15618825*a(n+2) -1650969*a(n+3) -9342280*a(n+4) -1729448*a(n+5)) +a(n+2)*(-19089675*a(n+2) -61394833*a(n+3) +6470716*a(n+4) +14929796*a(n+5)) +a(n+3)*(-1291668*a(n+3) +553572*a(n+4) +246032*a(n+5)) for all n in Z. - Michael Somos, Jun 23 2018
Comments