cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091570 Sum of odd proper divisors of n. Sum of the odd divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 8, 9, 1, 1, 13, 1, 6, 11, 12, 1, 4, 6, 14, 13, 8, 1, 24, 1, 1, 15, 18, 13, 13, 1, 20, 17, 6, 1, 32, 1, 12, 33, 24, 1, 4, 8, 31, 21, 14, 1, 40, 17, 8, 23, 30, 1, 24, 1, 32, 41, 1, 19, 48, 1, 18, 27, 48, 1, 13, 1, 38, 49
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 04 2004

Keywords

Examples

			The sum of odd divisors of 9 that are less than 9 is 1 + 3 = 4.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), this sequence (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n, 0]; Array[a, 75] (* Amiram Eldar, Oct 11 2023 *)
  • PARI
    a(n) = sumdiv(n , d, (d%2) * (dMichel Marcus, Jan 14 2014

Formula

If n is odd, a(n) = A000593(n) - n; if n is even, a(n) = A000593(n). - Michel Marcus, Jan 14 2014
G.f.: Sum_{k>=1} (2*k-1) * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Apr 13 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)-1)/4 = 0.1612335167... . - Amiram Eldar, Oct 11 2023

A066192 Composite numbers k such that the sum of the odd aliquot parts of k divides k.

Original entry on oeis.org

4, 8, 12, 16, 24, 32, 48, 56, 64, 96, 112, 120, 128, 192, 224, 240, 256, 384, 448, 480, 512, 528, 672, 768, 896, 960, 992, 1024, 1056, 1344, 1456, 1536, 1792, 1920, 1984, 2048, 2112, 2160, 2208, 2688, 2912, 3072, 3584, 3840, 3968, 4096, 4224, 4320, 4416
Offset: 1

Views

Author

Robert G. Wilson v, Dec 15 2001

Keywords

Comments

From Amiram Eldar, Apr 27 2025: (Start)
If there is an odd term in this sequence it must be an odd perfect number (A000396). If k is an odd term then d = sigma(k)-k divides k. If d < k then sigma(k) = k + d with d being an aliquot divisor of k which is possible only if k is prime and d = 1. Therefore, d = k and k must be an odd perfect number.
This sequence is infinite because if k is a term then 2*k is also a term. The primitive terms are in A383428. (End)

Crossrefs

Intersection of A002808 and A066191.

Programs

  • Mathematica
    Do[ d = Drop[ Divisors[ n ], -1 ]; l = Length[ d ]; od = 1; k = 2; While[ k <= l, If[ OddQ[ d[ [ k ] ] ], od = od + d[ [ k ] ] ]; k++ ]; If[ !PrimeQ[ n ] && IntegerQ[ n/od ], Print[ n ] ], {n, 2, 10^4} ]
    Select[Range[4500], CompositeQ[#] && Divisible[#, DivisorSigma[1, #/2^IntegerExponent[#, 2]] - If[OddQ[#], #, 0]] &] (* Amiram Eldar, Apr 27 2025 *)
  • PARI
    { n=0; for (m=4, 10^9, if (isprime(m), next); d=divisors(m); s=1; for (i=2, numdiv(m) - 1, if (d[i]%2, s += d[i])); if (s > 0 && m%s == 0, write("b066192.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 05 2010
    
  • PARI
    isok(k) = if(k == 1, 0, !isprime(k) && !(k % (sigma(k >> valuation(k, 2)) - if(k%2, k)))); \\ Amiram Eldar, Apr 27 2025

A383428 Primitive terms in A066192: number k such that k is a term of A066192 and k/2 is not.

Original entry on oeis.org

4, 12, 56, 120, 528, 672, 992, 1456, 2160, 2208, 6720, 9024, 9120, 11904, 13104, 16256, 17472, 24800, 29568, 55104, 55552, 73440, 90816, 95040, 119040, 120960, 121024, 123648, 131040, 146688, 151680, 174720, 195072, 223104, 297600, 397440, 399616, 445536, 505344
Offset: 1

Views

Author

Amiram Eldar, Apr 27 2025

Keywords

Comments

If a(1) = 1 instead of 4, then this will be the sequence of primitive terms in A069519.
If k is a term then 2^m * k is a term in A066192 for all m >= 0.
If there is an odd term in this sequence it must be an odd perfect number (A000396). See the comments in A066192.
Except for 4, numbers k such that A091570(k) | k and k/A091570(k) is odd.

Crossrefs

Subsequence of A066191 and A066192.

Programs

  • Mathematica
    q[n_] := Module[{s = DivisorSigma[1, n/2^IntegerExponent[n, 2]] - If[OddQ[n], n, 0]}, Divisible[n, s] && OddQ[n/s]]; Select[Range[550000], # == 4 || (CompositeQ[#] && q[#]) &]
  • PARI
    isok(k) = if(k == 1 || isprime(k), 0, if(k == 4, 1, my(s = sigma(k >> valuation(k, 2)) - if(k%2, k)); !(k % s) && (k/s) % 2));
Showing 1-3 of 3 results.