A066324 Number of endofunctions on n labeled points constructed from k rooted trees.
1, 2, 2, 9, 12, 6, 64, 96, 72, 24, 625, 1000, 900, 480, 120, 7776, 12960, 12960, 8640, 3600, 720, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 43046721
Offset: 1
Examples
Triangle T(n,k) begins: 1; 2, 2; 9, 12, 6; 64, 96, 72, 24; 625, 1000, 900, 480, 120; 7776, 12960, 12960, 8640, 3600, 720; 117649, 201684, 216090, 164640, 88200, 30240, 5040; ...
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 22 2012
-
Mathematica
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
-
PARI
T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011
Formula
T(n,k) = k*n^(n-k)*(n-1)!/(n-k)!.
E.g.f. (relative to x): A(x, y)=1/(1-y*B(x)) - 1 = y*x +(2*y+2*y^2)*x^2/2! + (9*y+12*y^2+6*y^3)*x^3/3! + ..., where B(x) is e.g.f. A000169.
From Peter Bala, Sep 30 2011: (Start)
Let F(x,t) = x/(1+t*x)*exp(-x/(1+t*x)) = x*(1 - (1+t)*x + (1+4*t+2*t^2)*x^2/2! - ...). F is essentially the e.g.f. for A144084 (see also A021010). Then the e.g.f. for the present table is t*F(x,t)^(-1), where the compositional inverse is taken with respect to x.
Removing a factor of n from the n-th row entries results in A122525 in row reversed form.
(End)
Sum_{k=2..n} (k-1) * T(n,k) = A001864(n). - Geoffrey Critzer, Aug 19 2013
Sum_{k=1..n} k * T(n,k) = A063169(n). - Alois P. Heinz, Dec 15 2021
Comments