cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066328 a(n) = sum of indices of distinct prime factors of n; here, index(i-th prime) = i.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 3, 6, 5, 5, 1, 7, 3, 8, 4, 6, 6, 9, 3, 3, 7, 2, 5, 10, 6, 11, 1, 7, 8, 7, 3, 12, 9, 8, 4, 13, 7, 14, 6, 5, 10, 15, 3, 4, 4, 9, 7, 16, 3, 8, 5, 10, 11, 17, 6, 18, 12, 6, 1, 9, 8, 19, 8, 11, 8, 20, 3, 21, 13, 5, 9, 9, 9, 22, 4, 2, 14, 23, 7, 10, 15, 12, 6, 24, 6, 10
Offset: 1

Views

Author

Leroy Quet, Jan 01 2002

Keywords

Comments

Equals row sums of triangle A143542. - Gary W. Adamson, Aug 23 2008
a(n) = the sum of the distinct parts of the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(75) = 5; indeed, the partition having Heinz number 75 = 3*5*5 is [2,3,3] and 2 + 3 = 5. - Emeric Deutsch, Jun 04 2015

Examples

			a(24) = 1 + 2 = 3 because 24 = 2^3 * 3 = p(1)^3 * p(2), p(k) being the k-th prime.
From _Gus Wiseman_, Mar 09 2019: (Start)
The distinct prime indices of 1..20 and their sums.
   1: () = 0
   2: (1) = 1
   3: (2) = 2
   4: (1) = 1
   5: (3) = 3
   6: (1+2) = 3
   7: (4) = 4
   8: (1) = 1
   9: (2) = 2
  10: (1+3) = 4
  11: (5) = 5
  12: (1+2) = 3
  13: (6) = 6
  14: (1+4) = 5
  15: (2+3) = 5
  16: (1) = 1
  17: (7) = 7
  18: (1+2) = 3
  19: (8) = 8
  20: (1+3) = 4
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(pi(d), d in factorset(n)), n=1..100); # Ridouane Oudra, Aug 19 2019
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_] := (Plus @@ PrimePi[ PrimeFactors[n]]); Table[ f[n], {n, 91}] (* Robert G. Wilson v, May 04 2004 *)
  • PARI
    { for (n=1, 1000, f=factor(n); a=0; for (i=1, matsize(f)[1], a+=primepi(f[i, 1])); write("b066328.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 10 2010
    
  • PARI
    a(n)=my(f=factor(n)[,1]); sum(i=1,#f,primepi(f[i])) \\ Charles R Greathouse IV, May 11 2015
    
  • PARI
    A066328(n) = vecsum(apply(primepi,(factor(n)[,1]))); \\ Antti Karttunen, Sep 06 2018
    
  • Python
    from sympy import primepi, primefactors
    def A066328(n): return sum(map(primepi,primefactors(n))) # Chai Wah Wu, Mar 13 2024

Formula

G.f.: Sum_{k>=1} k*x^prime(k)/(1-x^prime(k)). - Vladeta Jovovic, Aug 11 2004
Additive with a(p^e) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = A056239(A007947(n)). - Antti Karttunen, Sep 06 2018
a(n) = Sum_{p|n} A000720(p), where p is a prime. - Ridouane Oudra, Aug 19 2019