A066328 a(n) = sum of indices of distinct prime factors of n; here, index(i-th prime) = i.
0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 3, 6, 5, 5, 1, 7, 3, 8, 4, 6, 6, 9, 3, 3, 7, 2, 5, 10, 6, 11, 1, 7, 8, 7, 3, 12, 9, 8, 4, 13, 7, 14, 6, 5, 10, 15, 3, 4, 4, 9, 7, 16, 3, 8, 5, 10, 11, 17, 6, 18, 12, 6, 1, 9, 8, 19, 8, 11, 8, 20, 3, 21, 13, 5, 9, 9, 9, 22, 4, 2, 14, 23, 7, 10, 15, 12, 6, 24, 6, 10
Offset: 1
Keywords
Examples
a(24) = 1 + 2 = 3 because 24 = 2^3 * 3 = p(1)^3 * p(2), p(k) being the k-th prime. From _Gus Wiseman_, Mar 09 2019: (Start) The distinct prime indices of 1..20 and their sums. 1: () = 0 2: (1) = 1 3: (2) = 2 4: (1) = 1 5: (3) = 3 6: (1+2) = 3 7: (4) = 4 8: (1) = 1 9: (2) = 2 10: (1+3) = 4 11: (5) = 5 12: (1+2) = 3 13: (6) = 6 14: (1+4) = 5 15: (2+3) = 5 16: (1) = 1 17: (7) = 7 18: (1+2) = 3 19: (8) = 8 20: (1+3) = 4 (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (terms 1..1000 from Harry J. Smith)
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to Heinz numbers
Crossrefs
Programs
-
Maple
with(numtheory): seq(add(pi(d), d in factorset(n)), n=1..100); # Ridouane Oudra, Aug 19 2019
-
Mathematica
PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_] := (Plus @@ PrimePi[ PrimeFactors[n]]); Table[ f[n], {n, 91}] (* Robert G. Wilson v, May 04 2004 *)
-
PARI
{ for (n=1, 1000, f=factor(n); a=0; for (i=1, matsize(f)[1], a+=primepi(f[i, 1])); write("b066328.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 10 2010
-
PARI
a(n)=my(f=factor(n)[,1]); sum(i=1,#f,primepi(f[i])) \\ Charles R Greathouse IV, May 11 2015
-
PARI
A066328(n) = vecsum(apply(primepi,(factor(n)[,1]))); \\ Antti Karttunen, Sep 06 2018
-
Python
from sympy import primepi, primefactors def A066328(n): return sum(map(primepi,primefactors(n))) # Chai Wah Wu, Mar 13 2024
Formula
G.f.: Sum_{k>=1} k*x^prime(k)/(1-x^prime(k)). - Vladeta Jovovic, Aug 11 2004
Additive with a(p^e) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = Sum_{p|n} A000720(p), where p is a prime. - Ridouane Oudra, Aug 19 2019
Comments