A066509 a(n) is the first of a triple of consecutive integers, each of which is both the product of three distinct primes and also the product of three primes counted with multiplicity.
1309, 1885, 2013, 2665, 3729, 5133, 6061, 6213, 6305, 6477, 6853, 6985, 7257, 7953, 8393, 8533, 8785, 9213, 9453, 9821, 9877, 10281, 10945, 11605, 12453, 12565, 12801, 12857, 12993, 13053, 14133, 14313, 14329, 14465, 14817, 15085, 15265, 15805, 16113, 16133
Offset: 1
Keywords
Examples
a(5) = 3729 because it along with 3730 and 3731 are all the product of three distinct primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
- G. L. Honaker, Jr. and Chris K. Caldwell, Prime Curios! 1309.
Crossrefs
Programs
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1,1};lst={};Do[If[f[n]&&f[n+1]&&f[n+2],AppendTo[lst,n]],{n,9!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 04 2010 *) SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,17000}],{1,1,1}][[;;,1]] (* Harvey P. Dale, Feb 28 2025 *)
-
PARI
Trip(n) = { local(f); f=factor(n); if (matsize(f)[1] != 3, return(0)); for(i=1, 3, if (f[i, 2] != 1, return(0))); return(1); } { n=0; for (m=1, 10^10, if (!Trip(m) || !Trip(m+1) || !Trip(m+2), next); write("b066509.txt", n++, " ", m); if (n==1000, return) ) } \\ Harry J. Smith, Feb 19 2010
-
PARI
A066509(n,show_all=0,a=2*3*5,s=[1,1,1]~)={until( !n-- || !a++, until(, factor(a+2)[,2]!=s && (a+=3) && next; factor(a+1)[,2]!=s && (a+=2) && next; factor(a)[,2]==s && break; factor(a+3)[,2]==s && a++ && break; a+=4);show_all && print1(a",")); a} \\ M. F. Hasler, Jan 05 2013
-
PARI
is3dp(n)=my(f=factor(n));matsize(f)==[3,2]&&vecmax(f[,2])==1 list(lim)=my(v=List(),t);forprime(p=17,lim\15, forprime(q=5,min(p-1,lim\3), forprime(r=3,min(q-1,lim\(p*q)), t=p*q*r; if(t%4==1 && is3dp(t+1) && is3dp(t+2), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Jan 05 2013; updated Jan 22 2025
-
PARI
list(lim)=my(v=List(),ct); forfactored(n=1309,lim\1+2, if(n[2][,2]==[1,1,1]~, if(ct++==3, listput(v,n[1]-2)), ct=0)); Vec(v) \\ Charles R Greathouse IV, Aug 30 2022
Formula
a(n) == 1 (mod 4). - Zak Seidov, Mar 31 2020
Extensions
Definition clarified by Harvey P. Dale, Feb 28 2025
Comments