cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A215217 Smaller member of a pair of sphenic twins, consecutive integers, each the product of three distinct primes.

Original entry on oeis.org

230, 285, 429, 434, 609, 645, 741, 805, 902, 969, 986, 1001, 1022, 1065, 1085, 1105, 1130, 1221, 1245, 1265, 1309, 1310, 1334, 1406, 1434, 1442, 1462, 1490, 1505, 1533, 1581, 1598, 1605, 1614, 1634, 1729, 1742, 1833, 1885, 1886, 1946, 2013, 2014, 2054, 2085
Offset: 1

Views

Author

Martin Renner, Aug 06 2012

Keywords

Comments

455 is not a term of the sequence, since 455 = 5*7*13 is sphenic, i.e., the number of distinct prime factors is 3, though 456 = 2^3*3*19 has 3 distinct prime factors but is not sphenic, because the number of prime factors with repetition is 5 > 3.

Crossrefs

Programs

  • Haskell
    twinLow [] = []
    twinLow [_] = []
    twinLow (n : (m : ns))
        | m == n + 1 = n : twinLow (m : ns)
        | otherwise = twinLow (m : ns)
    a215217 n = (twinLow a007304_list) !! (n - 1)
    -- Peter Dolland, May 31 2019
    
  • Maple
    Sphenics:= select(t -> (map(s->s[2],ifactors(t)[2])=[1,1,1]), {$1..10000}):
    Sphenics intersect map(`-`,Sphenics,1); # Robert Israel, Aug 13 2014
  • Mathematica
    Select[Range[2500], (PrimeNu[#] == PrimeOmega[#] == PrimeNu[#+1] == PrimeOmega[#+1] == 3)&] (* Jean-François Alcover, Apr 11 2014 *)
    SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,2500}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    is_a033992(n) = omega(n)==3 && bigomega(n)==3
    is(n) = is_a033992(n) && is_a033992(n+1) \\ Felix Fröhlich, Jun 10 2019

A242621 Start of the least triple of consecutive squarefree numbers each of which has exactly n distinct prime factors.

Original entry on oeis.org

2, 33, 1309, 27962, 3323705, 296602730, 41704979953
Offset: 1

Views

Author

M. F. Hasler, May 18 2014

Keywords

Comments

As the example of a(4)=27962 shows, "consecutive squarefree numbers" means consecutive elements of A005117, not necessarily consecutive integers that (additionally) are squarefree; this would be a more restrictive condition.
a(8) <= 102099792179229 because A093550 - 1 is an upper bound of the present sequence.

Examples

			The two squarefree numbers following a(4)=27962, namely, 27965 and 27966, also have 4 prime divisors just as a(4).
		

Crossrefs

See A242605-A242608 for triples of consecutive squarefree numbers with m=2,..,5 prime factors.
See A246470 for the quadruplet and A246548 for the 5-tuple versions of this sequence.
See A039833, A066509, A176167 and A192203 for triples of consecutive numbers which are squarefree and have m=2,..,5 prime factors.

Extensions

Edited and a(6)-a(7) added by Hans Havermann, Aug 27 2014

A248202 Sphenic numbers (A007304) whose neighbors are sphenic.

Original entry on oeis.org

1310, 1886, 2014, 2666, 3730, 5134, 6062, 6214, 6306, 6478, 6854, 6986, 7258, 7954, 8394, 8534, 8786, 9214, 9454, 9822, 9878, 10282, 10946, 11606, 12454, 12566, 12802, 12858, 12994, 13054, 14134, 14314, 14330, 14466, 14818, 15086, 15266, 15806, 16114, 16134
Offset: 1

Views

Author

James G. Merickel, Oct 03 2014

Keywords

Comments

Subsequence of A169834 and offset by 1 from the values in A066509.

Examples

			1309, 1310 and 1311 factor as 7*11*17, 2*5*131 and 3*19*23, respectively.  No smaller such trio exists, so a(1)=1310.
		

Crossrefs

Programs

  • Mathematica
    a248202[n_Integer] := Select[Range[n],
      And[And[PrimeNu[#] == 3, PrimeNu[# - 1] == 3, PrimeNu[# + 1] == 3], And[PrimeOmega[#] == 3, PrimeOmega[# - 1] == 3, PrimeOmega[# + 1] == 3]] &]; a248202[20166](* Michael De Vlieger, Nov 06 2014 *)
    f[n_]:=Last/@FactorInteger[n]=={1, 1, 1}; lst={}; Do[If[f[n]&&f[n+1]&&f[n+2], AppendTo[lst, n + 1]], {n, 17000}]; lst (* Vincenzo Librandi, Jul 24 2015 *)
    Mean/@SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,20000}],{1,1,1}] (* Harvey P. Dale, Dec 08 2024 *)
  • PARI
    sq(n)=bigomega(n)==3 && omega(n)==3;
    for(n=3,10^5,if(sq(n-1)&&sq(n)&&sq(n+1),print1(n,", ")));
    \\ Joerg Arndt, Oct 18 2014

Formula

a(n) = A066509(n)+1.

A248203 Numbers n such that n-1, n, and n+1 are the product of 4 distinct primes.

Original entry on oeis.org

203434, 214490, 225070, 258014, 294594, 313054, 315722, 352886, 389390, 409354, 418846, 421630, 452354, 464386, 478906, 485134, 500906, 508046, 508990, 526030, 528410, 538746, 542270, 542794, 548302, 556870, 559690, 569066, 571234, 579886, 582406, 588730
Offset: 1

Views

Author

James G. Merickel, Oct 28 2014

Keywords

Comments

A subsequence of A066509 and offset by one from A176167.

Examples

			203433 factors as 3*19*43*83, 203434 factors as 2*7*11*1321 and 203435 factors as 5*23*29*61; and with no similar smaller trio a(1)=203434. [Corrected by _James G. Merickel_, Jul 23 2015]
		

Crossrefs

Programs

  • Mathematica
    f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n + 1]&&f1[n+2], AppendTo[lst, n + 1]], {n, 2 8!, 4 9!}]; lst (* Vincenzo Librandi, Aug 02 2015 *)
  • PARI
    {
    \\ Initialized at A093550(4) (3rd term there, w/offset=2). If this \\
    \\ program is to run from a different starting value of n, it must not \\
    \\ be congruent to -1, 0 or 1 modulo 9 (in addition to being congruent \\
    \\ to 2 modulo 4), and either u or the vector s needs to be brought into \\
    \\ agreement. \\
    n=203434;s=[4,4,8,8,8,4];u=1;
    while(1,
      if(issquarefree(n) &&
        issquarefree(n-1) &&
        issquarefree(n+1) &&
        omega(n)==4 &&
        omega(n-1)==4 &&
        omega(n+1)==4,
        print1(n, ", "));
      n+=s[u];if(u==6,u=1,u++))
    } \\ James G. Merickel, Jul 23 2015
    
  • PARI
    is_ok(n)=(n>1&&omega(n-1)==4&&omega(n)==4&&omega(n+1)==4&&issquarefree(n-1)&&issquarefree(n)&&issquarefree(n+1));
    first(m)=my(v=vector(m),i,t=2);for(i=1,m,while(!is_ok(t),t++);v[i]=t;t++);v; /* Anders Hellström, Aug 01 2015 */

Formula

a(n) = A176167(n)+1.

A248204 Middle values in trios of products of 5 distinct primes.

Original entry on oeis.org

16467034, 18185870, 21134554, 21374354, 21871366, 22247554, 22412534, 22721586, 24845314, 25118094, 25228930, 25435334, 25596934, 26217246, 27140114, 29218630, 29752346, 30323734, 30563246, 31943066, 32663266, 33367894, 36055046, 38269022, 39738062, 40547066
Offset: 1

Views

Author

James G. Merickel, Oct 28 2014

Keywords

Comments

A subsequence of A066509 and offset by 1 from A192203.

Examples

			16467033=3*11*17*149*197,
16467034=2*19*23*83*227, and
16467035=5*13*37*41*167,
with no smaller similar trio. So a(1)=16467034. [Corrected by _James G. Merickel_, Jul 23 2015]
		

Crossrefs

Programs

  • PARI
    {
    \\ This program checks all consecutives with elements not divisible \\
    \\ by the squares of 2 or 3. More efficiency is required if enormous \\
    \\ numbers of terms are sought and for the analog sequences beyond \\
    \\ 6 prime factors. The start value is A093550(5). If a start other \\
    \\ than this is chosen, one must be sure that (one of) s or u is \\
    \\ adjusted if it needs to be. \\
    n=16467034;s=[8,4,4,4,8,8];u=1;
    while(1,
      if(issquarefree(n) && issquarefree(n-1) && issquarefree(n+1) && omega(n)==5 && omega(n-1)==5 && omega(n+1)==5, print1(n" "));
      n+=s[u];
      if(u==6,u=1,u++)
    )
    } \\ James G. Merickel, Jul 23 2015

Formula

a(n) = A192203(n) + 1.

A192203 Numbers k such that k, k+1, and k+2 are each the product of exactly 5 distinct primes.

Original entry on oeis.org

16467033, 18185869, 21134553, 21374353, 21871365, 22247553, 22412533, 22721585, 24845313, 25118093, 25228929, 25345333, 25596933, 26217245, 27140113, 29218629, 29752345, 30323733, 30563245, 31943065, 32663265, 33367893, 36055045, 38269021, 39738061, 40547065
Offset: 1

Views

Author

Gil Broussard, Jun 25 2011

Keywords

Comments

Numbers k such that k, k+1, and k+2 are all members of A046387. - N. J. A. Sloane, Jul 17 2024
A subsequence of A242608 intersect A016813. - M. F. Hasler, May 19 2014
All terms are congruent to 1 mod 4. - Zak Seidov, Dec 22 2014

Examples

			a(1)=16467033 because it is the product of 5 distinct primes (3,11,17,149,197), and so are a(1)+1: 16467034 (2,19,23,83,227), and a(1)+2: 16467035 (5,13,37,41,167).
		

Crossrefs

Cf. A046387, A140079. Subsequence of A318964 and of A364266.

Programs

  • Mathematica
    SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==5,1,0],{n,164*10^5,406*10^5}],{1,1,1}][[;;,1]]+164*10^5-1 (* Harvey P. Dale, Jul 17 2024 *)
  • PARI
    forstep(n=1+10^7,1e8,4, for(k=n,n+2,issquarefree(k)||next(2)); for(k=n,n+2,omega(k)==5||next(2));print1((n)", ")) \\ M. F. Hasler, May 19 2014

A176167 First of a triple of consecutive integers, each the product of 4 distinct primes.

Original entry on oeis.org

203433, 214489, 225069, 258013, 294593, 313053, 315721, 352885, 389389, 409353, 418845, 421629, 452353, 464385, 478905, 485133, 500905, 508045, 508989, 526029, 528409, 538745, 542269, 542793, 548301, 556869, 559689, 569065, 571233, 579885
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A242607 and A016813. - M. F. Hasler, May 19 2014

Examples

			203433 is a term: 203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61.
		

Crossrefs

Cf. A039833, A066509, A192203. Subsequence of A140078 and of A318896.

Programs

  • Mathematica
    f1[n_]:=Last/@FactorInteger[n]=={1,1,1,1};f2[n_]:=Max[Last/@FactorInteger[n]];lst={};Do[If[f1[n]&&f1[n+1]&&f1[n+2],AppendTo[lst,n]],{n,5*8!,7*9!}];lst
  • PARI
    forstep(n=1+10^5,10^7,4, for(k=n,n+2,issquarefree(k)||next(2)); for(k=n,n+2,omega(k)==4||next(2));print1((n)",")) \\ M. F. Hasler, May 19 2014

A242606 Start of a triple of consecutive squarefree numbers each of which has exactly 3 distinct prime factors.

Original entry on oeis.org

1309, 1442, 1885, 2013, 2091, 2665, 2694, 2714, 3243, 3422, 3655, 3729, 3854, 3855, 4430, 4431, 4503, 4921, 5034, 5035, 5133, 5282, 5678, 5795, 5882, 5883, 5943, 5954, 6054, 6061, 6094, 6213, 6302, 6303, 6305, 6306, 6477, 6851, 6853, 6873, 6985, 7202, 7257, 7334, 7383, 7682, 7730, 7802, 7842, 7922, 7953, 8238, 8239
Offset: 1

Views

Author

M. F. Hasler, May 18 2014

Keywords

Comments

Sequence A066509 is a subsequence.

Examples

			The two squarefree numbers following a(1)=1309=7*11*17 are 1310=2*5*131 and 1311=3*19*23, all three have 3 prime divisors.
The same is true for a(2)=1442, 1443 and the next squarefree number which is 1446.
Further examples are provided by the first "sphenic triples" (1309, 1310, 1311), (1885, 1886, 1887) and (2013, 2014, 2015).
		

Crossrefs

See A242605-A242608 for triples of consecutive squarefree numbers (A005117) with m=2,...,5 prime factors; A242621 (first terms for positive m).

Programs

  • Mathematica
    Transpose[Select[Partition[Select[Range[10000],SquareFreeQ],3,1], Union[ PrimeNu[ #]] == {3}&]][[1]] (* Harvey P. Dale, Apr 29 2016 *)
  • PARI
    (back(n)=for(i=1,2,until(issquarefree(n--),));n);for(n=1,9999,issquarefree(n)||next;ndk==ndm&&omega(n)==ndm&&ndk==3&&print1(back(n)",");ndk=ndm;ndm=omega(n))

Extensions

Minor edit by Hans Havermann, Aug 19 2014

A215015 Number of sphenic twins up to 10^n.

Original entry on oeis.org

0, 0, 11, 337, 4206, 43330, 417479, 3917508, 36358375, 336046778, 3105465308, 28739218426
Offset: 1

Views

Author

Martin Renner, Aug 06 2012

Keywords

Comments

The sphenic twin pairs {230, 231}, {285, 286}, ... are counted once at a time.

Examples

			a(3) = 11 since there are 11 sphenic twins below 10^3 whose smaller members are 230, 285, 429, 434, 609, 645, 741, 805, 902, 969, 986.
		

Crossrefs

Programs

  • Mathematica
    sphQ[n_]:= FactorInteger[n][[;;,2]] == {1, 1, 1}; c = 0; p = 10; q1 = 0; seq = {}; Do[q2 = sphQ[k]; If[q1 && q2, c++]; If[k == p, AppendTo[seq, c]; p*=10]; q1 = q2, {k, 2, 10^5}]; seq (* Amiram Eldar, Dec 26 2019 *)

Extensions

a(8)-a(10) from Amiram Eldar, Dec 26 2019
a(11)-a(12) from Lucas A. Brown, Feb 12 2024

A242492 For any integer m > 1, the m-th term of the sequence is the minimal squarefree integer x with exactly m prime divisors such that x+1 and x+2 are also squarefree integers with exactly m prime divisors.

Original entry on oeis.org

33, 1309, 203433, 16467033, 1990586013, 41704979953, 102099792179229
Offset: 2

Views

Author

Keywords

Comments

The five terms for m = 2,3,4,5,6 were computed with the aid of PARI/GP. But it seems to be rather difficult to compute higher terms, if they exist at all.
The distribution of squarefree integers with exactly m prime factors is given in the book by Montgomery and Vaughan, Multiplicative Number Theory, but I do not have access to it and do not know whether it also addresses the problem of three consecutive numbers of this kind.

Examples

			33 = 3*11, 34 = 2*17, 35 = 5*7;
1309 = 7*11*17, 1310 = 2*5*131, 1311 = 3*19*23;
203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61;
16467033 = 3*11*17*149*197, 16467034 = 2*19*23*83*227, 16467035 = 5*13*37*41*167; (CPU time 48 seconds)
1990586013 = 3*13*29*67*109*241, 1990586014 = 2*23*37*43*59*461, 1990586015 = 5*11*17*19*89*1259. (CPU time 2 hours and 34 minutes)
		

References

  • Hugh L. Montgomery and Robert C. Vaughan: "Multiplicative Number Theory: 1. Classical Theory", Cambridge studies in advanced mathematics, vol. 97, Cambridge University Press (2007)

Crossrefs

Cf. A007675 (any m), A039833 (m=2), A066509 (m=3), A176167 (m=4), A192203 (m=5), A068088 (sextets with gap).
Cf. A242605-A242608 for start of triples of consecutive squarefree numbers with m=2,...,5 prime factors, A242621 for the analog of the present sequence in that spirit.

Programs

  • PARI
    {default(primelimit,2M); lb=2; ub=2*10^9; m=1; i=0; j=0; loc=0; while(m<6, m=m+1; for(n=lb,ub, if(issquarefree(n)&&(m==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
    				

Formula

a(n) = A093550(n)-1. - M. F. Hasler, May 20 2014
Showing 1-10 of 12 results. Next