A215217 Smaller member of a pair of sphenic twins, consecutive integers, each the product of three distinct primes.
230, 285, 429, 434, 609, 645, 741, 805, 902, 969, 986, 1001, 1022, 1065, 1085, 1105, 1130, 1221, 1245, 1265, 1309, 1310, 1334, 1406, 1434, 1442, 1462, 1490, 1505, 1533, 1581, 1598, 1605, 1614, 1634, 1729, 1742, 1833, 1885, 1886, 1946, 2013, 2014, 2054, 2085
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
twinLow [] = [] twinLow [_] = [] twinLow (n : (m : ns)) | m == n + 1 = n : twinLow (m : ns) | otherwise = twinLow (m : ns) a215217 n = (twinLow a007304_list) !! (n - 1) -- Peter Dolland, May 31 2019
-
Maple
Sphenics:= select(t -> (map(s->s[2],ifactors(t)[2])=[1,1,1]), {$1..10000}): Sphenics intersect map(`-`,Sphenics,1); # Robert Israel, Aug 13 2014
-
Mathematica
Select[Range[2500], (PrimeNu[#] == PrimeOmega[#] == PrimeNu[#+1] == PrimeOmega[#+1] == 3)&] (* Jean-François Alcover, Apr 11 2014 *) SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,2500}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
-
PARI
is_a033992(n) = omega(n)==3 && bigomega(n)==3 is(n) = is_a033992(n) && is_a033992(n+1) \\ Felix Fröhlich, Jun 10 2019
Comments