cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A308339 Sphenic number indices of A215217.

Original entry on oeis.org

21, 30, 49, 51, 75, 82, 96, 106, 120, 130, 133, 136, 141, 148, 152, 157, 161, 173, 177, 180, 186, 187, 189, 202, 207, 209, 213, 217, 221, 226, 236, 240, 242, 244, 248, 261, 264, 277, 285, 286, 294, 305, 306, 311, 317, 320, 322, 327, 333, 349, 355, 364, 368
Offset: 1

Views

Author

Peter Dolland, May 20 2019

Keywords

Comments

A215217 is a subsequence of A007304 (by definition). The index sequence is more compact.

Examples

			For n = 3: a(3) = 49 and A215217(3) = 429 = A007304(49).
		

Crossrefs

Programs

  • Haskell
    twinLowX [] = []
    twinLowX [_] = []
    twinLowX (n : (m : ns))
        | m == n + 1 = 1 : (map succ (twinLowX (m : ns)))
        | otherwise = (map succ (twinLowX (m : ns)))
    a308339 n = (twinLowX a007304_list) !! (n - 1)
    -- Peter Dolland, May 31 2019

Formula

A215217(n) = A007304(a(n)).

A066509 a(n) is the first of a triple of consecutive integers, each of which is both the product of three distinct primes and also the product of three primes counted with multiplicity.

Original entry on oeis.org

1309, 1885, 2013, 2665, 3729, 5133, 6061, 6213, 6305, 6477, 6853, 6985, 7257, 7953, 8393, 8533, 8785, 9213, 9453, 9821, 9877, 10281, 10945, 11605, 12453, 12565, 12801, 12857, 12993, 13053, 14133, 14313, 14329, 14465, 14817, 15085, 15265, 15805, 16113, 16133
Offset: 1

Views

Author

Jason Earls, Jan 04 2002

Keywords

Comments

A subsequence of A052214 and thus of A005238. - M. F. Hasler, Jan 05 2013
Also, the start of pairs of adjacent sphenic twins, i.e., a(n) = A215217(k) such that A215217(k+1) = A215217(k)+1. Therefore these triples might be called "sphenic triples". They form a subsequence of A242606. - M. F. Hasler, May 18 2014
Minimal difference is 4 which occurs at indices n = {316, 547, 566, 604, 666, 695, 821, 874, 979, ...}. - Zak Seidov, Jul 04 2020

Examples

			a(5) = 3729 because it along with 3730 and 3731 are all the product of three distinct primes.
		

Crossrefs

Subsequence of A052214 and hence of A005238.
Subsequence of A215217, A007675, A242606 and A168626.

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1};lst={};Do[If[f[n]&&f[n+1]&&f[n+2],AppendTo[lst,n]],{n,9!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 04 2010 *)
    SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,17000}],{1,1,1}][[;;,1]] (* Harvey P. Dale, Feb 28 2025 *)
  • PARI
    Trip(n) = { local(f); f=factor(n); if (matsize(f)[1] != 3, return(0)); for(i=1, 3, if (f[i, 2] != 1, return(0))); return(1); } { n=0; for (m=1, 10^10, if (!Trip(m) || !Trip(m+1) || !Trip(m+2), next); write("b066509.txt", n++, " ", m); if (n==1000, return) ) } \\ Harry J. Smith, Feb 19 2010
    
  • PARI
    A066509(n,show_all=0,a=2*3*5,s=[1,1,1]~)={until( !n-- || !a++, until(, factor(a+2)[,2]!=s && (a+=3) && next; factor(a+1)[,2]!=s && (a+=2) && next; factor(a)[,2]==s && break; factor(a+3)[,2]==s && a++ && break; a+=4);show_all && print1(a",")); a} \\ M. F. Hasler, Jan 05 2013
    
  • PARI
    is3dp(n)=my(f=factor(n));matsize(f)==[3,2]&&vecmax(f[,2])==1
    list(lim)=my(v=List(),t);forprime(p=17,lim\15, forprime(q=5,min(p-1,lim\3), forprime(r=3,min(q-1,lim\(p*q)), t=p*q*r; if(t%4==1 && is3dp(t+1) && is3dp(t+2), listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Jan 05 2013; updated Jan 22 2025
    
  • PARI
    list(lim)=my(v=List(),ct); forfactored(n=1309,lim\1+2, if(n[2][,2]==[1,1,1]~, if(ct++==3, listput(v,n[1]-2)), ct=0)); Vec(v) \\ Charles R Greathouse IV, Aug 30 2022

Formula

a(n) == 1 (mod 4). - Zak Seidov, Mar 31 2020

Extensions

Definition clarified by Harvey P. Dale, Feb 28 2025

A318896 Numbers k such that k and k+1 are the product of exactly four distinct primes.

Original entry on oeis.org

7314, 8294, 8645, 11570, 13629, 13845, 15105, 15554, 16554, 17390, 17654, 18290, 19005, 20405, 20769, 21489, 22010, 22154, 23001, 23114, 23529, 24530, 24765, 24870, 24969, 25346, 26690, 26894, 26961, 27434, 27965, 28105, 29145, 29210, 29414, 29469, 29666, 30414
Offset: 1

Views

Author

Seiichi Manyama, Sep 05 2018

Keywords

Comments

This sequence is different from A140078. For example, A140078(4) = 9009 = 3^2 * 7 * 11 * 13 is not a term.

Examples

			n | a(n)                    | a(n)+1
--+-------------------------+-------------------------
1 | 7314 = 2 *  3 * 23 * 53 | 7315 = 5 * 7 * 11 *  19
2 | 8294 = 2 * 11 * 13 * 29 | 8295 = 3 * 5 *  7 *  79
3 | 8645 = 5 *  7 * 13 * 19 | 8646 = 2 * 3 * 11 * 131
		

Crossrefs

Subsequence of A140078.

Programs

  • PARI
    is(n) = omega(n)==4 && omega(n+1)==4 && bigomega(n)==4 && bigomega(n+1)==4 \\ Felix Fröhlich, Sep 05 2018
    
  • PARI
    is(n) = factor(n)[, 2]~ == [1, 1, 1, 1] && factor(n+1)[, 2]~ == [1, 1, 1, 1] \\ David A. Corneth, Sep 06 2018

A086263 Smaller of two consecutive squarefree numbers having equal numbers of prime factors.

Original entry on oeis.org

2, 14, 21, 33, 34, 38, 57, 85, 86, 93, 94, 118, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 217, 218, 230, 253, 285, 298, 301, 302, 326, 334, 381, 393, 394, 429, 434, 445, 446, 453, 481, 501, 514, 526, 537, 542, 553, 565, 609, 622, 633, 634
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 14 2003

Keywords

Comments

a(k) is a term of A075039 iff a(k)+1 = a(k+1).
If a prime divides a(n) then it does not divide a(n) + 1. If a prime divides a(n) + 1, then it does not divide a(n). The sets of prime divisors of a(n) and a(n) + 1 are disjoint. - Torlach Rush, Jan 13 2018

Examples

			230 = 2*5*23 and 230+1 = 3*7*11, therefore 230 is a term.
		

Crossrefs

Cf. A005117, A263990 (2 prime factors), A215217 (3 prime factors), A318896 (4 prime factors), A318964 (5 prime factors), A001221, A001222, A075039.

Programs

  • Mathematica
    Select[Range[2, 634], SquareFreeQ[#] && SquareFreeQ[# + 1] && Length[FactorInteger[#]] == Length[FactorInteger[# + 1]] &] (* T. D. Noe, Jun 26 2013 *)
    #[[1,1]]&/@Select[Partition[Table[{n,If[SquareFreeQ[n],1,0], PrimeOmega[ n]},{n,700}],2,1],#[[1,2]]==#[[2,2]]==1&&#[[1,3]]==#[[2,3]]&] (* Harvey P. Dale, Dec 13 2014 *)
  • PARI
    for(n=1,10^3, if ( issquarefree(n) && issquarefree(n+1) && (omega(n)==omega(n+1)) , print1(n,", "))); \\ Joerg Arndt, Jun 26 2013

Formula

A001221(a(n)) = A001222(a(n)) = A001221(a(n)+1) = A001222(a(n)+1).

A318964 Numbers k such that both k and k+1 are the product of exactly five distinct primes.

Original entry on oeis.org

378014, 421134, 483405, 486590, 486794, 489345, 507129, 545258, 549185, 558789, 558830, 634809, 637329, 663585, 667029, 690234, 720290, 776985, 782690, 823745, 824109, 853005, 853034, 855645, 873885, 883245, 892905, 935714, 945230, 968253, 987734, 999005, 1005081, 1013726
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2018

Keywords

Examples

			n | a(n)                           | a(n)+1
--+--------------------------------+--------------------------------
1 | 378014 = 2 * 7 * 13 * 31 *  67 | 378015 = 3 *  5 * 11 * 29 * 79
2 | 421134 = 2 * 3 *  7 * 37 * 271 | 421135 = 5 * 11 * 13 * 19 * 31
3 | 483405 = 3 * 5 * 13 * 37 *  67 | 483406 = 2 *  7 * 11 * 43 * 73
		

Crossrefs

Subsequence of A140079.

Programs

  • PARI
    is(n) = omega(n)==5 && omega(n+1)==5 && bigomega(n)==5 && bigomega(n+1)==5 \\ Felix Fröhlich, Sep 06 2018

A215015 Number of sphenic twins up to 10^n.

Original entry on oeis.org

0, 0, 11, 337, 4206, 43330, 417479, 3917508, 36358375, 336046778, 3105465308, 28739218426
Offset: 1

Views

Author

Martin Renner, Aug 06 2012

Keywords

Comments

The sphenic twin pairs {230, 231}, {285, 286}, ... are counted once at a time.

Examples

			a(3) = 11 since there are 11 sphenic twins below 10^3 whose smaller members are 230, 285, 429, 434, 609, 645, 741, 805, 902, 969, 986.
		

Crossrefs

Programs

  • Mathematica
    sphQ[n_]:= FactorInteger[n][[;;,2]] == {1, 1, 1}; c = 0; p = 10; q1 = 0; seq = {}; Do[q2 = sphQ[k]; If[q1 && q2, c++]; If[k == p, AppendTo[seq, c]; p*=10]; q1 = q2, {k, 2, 10^5}]; seq (* Amiram Eldar, Dec 26 2019 *)

Extensions

a(8)-a(10) from Amiram Eldar, Dec 26 2019
a(11)-a(12) from Lucas A. Brown, Feb 12 2024

A215152 Number of sphenic triples up to 10^n.

Original entry on oeis.org

0, 0, 0, 21, 445, 5457, 55576, 527138, 4824694, 43484124, 389855718
Offset: 1

Views

Author

Martin Renner, Aug 06 2012

Keywords

Comments

The sphenic triples {1309, 1310, 1311}, {1885, 1886, 1887}, ... are counted once at a time.

Crossrefs

Programs

  • PARI
    issemiprime(n) = factor(n)[,2]~ == [1,1];
    issphenic(n) = factor(n)[,2]~ == [1,1,1];
    list(nmax) = {my(c = 0, pow = 10, lim = 10^nmax/2+1); forstep(k = 1, lim, 2, if(issemiprime(k) && issphenic(2*k-1) && issphenic(2*k+1), c++); if(2*k-1 > pow, print1(c, ", "); pow *= 10));} \\ Amiram Eldar, Jan 15 2025

Extensions

a(8)-a(10) from Bert Dobbelaere, Jul 15 2023
a(11) from Amiram Eldar, Jan 15 2025

A240716 Both 1 + 6 n and 6 + 35 n are prime.

Original entry on oeis.org

1, 5, 7, 13, 17, 23, 25, 35, 37, 55, 61, 91, 95, 101, 121, 131, 137, 143, 161, 175, 187, 221, 233, 245, 257, 271, 311, 335, 391, 395, 397, 443, 445, 451, 461, 475, 511, 527, 545, 557, 577, 583, 641, 653, 683, 685, 703, 737, 761, 773, 787, 797, 805
Offset: 1

Views

Author

Robert Israel, Apr 10 2014

Keywords

Comments

The consecutive integers 35 + 210 a(n) and 36 + 210 a(n) are both products of three primes (distinct if n > 1).

Crossrefs

Cf. A215217.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(6*n+1) and IsPrime(35*n+6)]; // Vincenzo Librandi, Jul 01 2014
  • Maple
    A240716 := select(t -> andmap(isprime,[1+6*t,6+35*t]),[$1..N]); # Robert Israel, Apr 10 2014
  • Mathematica
    Select[Range[1000], PrimeQ[6 # + 1] && PrimeQ[35 # + 6] &] (* Vincenzo Librandi, Jul 01 2014 *)

A242068 First of two consecutive sphenic numbers with no semiprime between them.

Original entry on oeis.org

102, 170, 230, 238, 255, 282, 285, 366, 399, 429, 430, 434, 438, 598, 602, 606, 609, 615, 638, 642, 645, 651, 663, 741, 759, 805, 822, 826, 854, 902, 935, 969, 986, 1001, 1022, 1030, 1065, 1085, 1086, 1102, 1105, 1130, 1178, 1182, 1221, 1245, 1265, 1295, 1309, 1310, 1334, 1358, 1374, 1406, 1419, 1426, 1434
Offset: 1

Views

Author

Robert Israel, Aug 13 2014

Keywords

Comments

Sphenic numbers are products of three distinct primes. Semiprimes are products of two primes, not necessarily distinct.
Contains A215217.

Examples

			102=2*3*17 and 105=3*5*7 are sphenic numbers, i.e., products of three distinct primes, and neither 103 (a prime) nor 104=2^3*13 is a semiprime, so 102 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms where the next sphenic number <= N
    Sphenics:= select(t -> (map(s->s[2],ifactors(t)[2])=[1,1,1]), {$1..N}):
    Primes:= select(isprime,{2,seq(2*i+1,i=1..floor(N/2))}):
    Semiprimes:= {seq(seq(p*q,q=select(`<=`,Primes,N/p)),p=Primes)}:
    map(proc(i) if nops(Semiprimes intersect {$Sphenics[i]..Sphenics[i+1]}) = 0 then Sphenics[i] else NULL fi end proc, [$1..nops(Sphenics)-1]);
  • Mathematica
    sw = Switch[FactorInteger[#][[All, 2]], {1, 1}, {#, 2}, {1, 1, 1}, {#, 3}, _, Nothing]& /@ Range[10^4];
    sp = SequencePosition[sw, {{, 3}, {, 3}}][[All, 1]];
    sw[[sp]][[All, 1]] (* Jean-François Alcover, Sep 26 2020 *)
Showing 1-9 of 9 results.