cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035090 Non-palindromic squares which when written backwards remain square (and still have the same number of digits).

Original entry on oeis.org

144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Comments

Squares with trailing zeros not included.
Sequence is infinite, since it includes, e.g., 10^(2k) + 4*10^k + 4 for all k. - Robert Israel, Sep 20 2015

Crossrefs

Reversing a polytopal number gives a polytopal number:
cube to cube: A035123, A035124, A035125, A002781;
square to square: A161902, A035090, A033294, A106323, A106324, A002779;
square to triangular: A181412, A066702;
tetrahedral to tetrahedral: A006030;
triangular to square: A066703, A179889;
triangular to triangular: A066528, A069673, A003098, A066569.
Cf. A319388.

Programs

  • Maple
    rev:= proc(n) local L,i;
    L:= convert(n,base,10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local t;
      if n mod 10 = 0 then return false fi;
      t:= rev(n);
    t <> n and issqr(t)
    end proc:
    select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015
  • Mathematica
    Select[Range[1200]^2,!PalindromeQ[#]&&IntegerLength[#]==IntegerLength[ IntegerReverse[ #]] && IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Harvey P. Dale, Jul 19 2023 *)

Formula

a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017

A069673 Nonpalindromic triangular numbers whose digit reversal is also a triangular number (possibly with fewer digits).

Original entry on oeis.org

10, 120, 153, 190, 300, 351, 630, 820, 17578, 87571, 156520, 180300, 185745, 547581, 557040, 678030, 1461195, 1851850, 5911641, 6056940, 12145056, 12517506, 16678200, 56440000, 60571521, 65054121, 157433640, 188267310, 304119453, 354911403, 1261250200
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Crossrefs

See A066528 for a different version.

Extensions

More terms from Jason Earls, Jun 07 2002
a(27)-a(31) from Giovanni Resta, Jun 20 2015

A061455 Triangular numbers whose digit reversal is also a triangular number.

Original entry on oeis.org

0, 1, 3, 6, 10, 55, 66, 120, 153, 171, 190, 300, 351, 595, 630, 666, 820, 3003, 5995, 8778, 15051, 17578, 66066, 87571, 156520, 180300, 185745, 547581, 557040, 617716, 678030, 828828, 1269621, 1461195, 1680861, 1851850, 3544453, 5073705, 5676765, 5911641
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			153 is in the sequence because (1) it is a triangular number and (2) its reversal 351 is also a triangular number.
		

Crossrefs

Programs

  • Maple
    read("transforms");
    isA000217 := proc(n) issqr(1+8*n) ;end proc:
    isA061455 := proc(n) isA000217(n) and isA000217(digrev(n)) ; end proc:
    for n from 0 to 60000 do T := A000217(n) ; if isA061455(T) then printf("%d,", T) ; end if; end do: # R. J. Mathar, Dec 13 2010
  • Mathematica
    TriangularNumberQ[k_] := If[IntegerQ[1/2 (Sqrt[1 + 8 k] - 1)], True, False]; Select[Range[0, 5676765], TriangularNumberQ[#] && TriangularNumberQ[FromDigits[Reverse[IntegerDigits[#]]]] &] (* Ant King, Dec 13 2010 *)
  • PARI
    isok(n) = ispolygonal(n, 3) && ispolygonal(fromdigits(Vecrev(digits(n))), 3); \\ Michel Marcus, Apr 14 2019

Formula

a(n)=A000217(k) and A004086(a(n))=A000217(j) for some k and j. - R. J. Mathar, Jun 02 2006

Extensions

More terms from Erich Friedman, May 08 2001
Edited by N. J. A. Sloane, Aug 13 2008 at the suggestion of R. J. Mathar

A066528 Non-palindromic triangular numbers whose reverse is a triangular number with the same number of digits.

Original entry on oeis.org

153, 351, 17578, 87571, 185745, 547581, 1461195, 5911641, 12145056, 12517506, 60571521, 65054121, 304119453, 354911403, 1775275491, 1945725771, 10246462281, 17990863516, 18226464201, 35615002605, 50620051653, 61536809971, 1222080857271, 1664224065406
Offset: 1

Views

Author

Erich Friedman, Jan 08 2002

Keywords

Examples

			153 and 351 are both triangular.
		

Crossrefs

See A069673 for another version.

Programs

  • Mathematica
    dtn[L_] := Fold[10#1+#2&, 0, L]; tritest[n_] := Module[{t}, t=Floor[N[Sqrt[2n]]]; 2n==t(t+1)]; A={}; For[i=1, i>0, i++, t=i(i+1)/2; If[tritest[tt=dtn[Reverse[IntegerDigits[t]]]]&&Mod[t, 10]>0&&t=!=tt, AppendTo[A, t]; Print[A]]]

Extensions

a(22)-a(24) from Giovanni Resta, Jun 20 2015
Showing 1-4 of 4 results.