cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066780 a(n) = Product_{k=1..n} sigma(k); sigma(k) is the sum of the positive divisors of n.

Original entry on oeis.org

1, 3, 12, 84, 504, 6048, 48384, 725760, 9434880, 169827840, 2037934080, 57062154240, 798870159360, 19172883824640, 460149211791360, 14264625565532160, 256763260179578880, 10013767147003576320, 200275342940071526400, 8411564403483004108800
Offset: 1

Views

Author

Benoit Cloitre and Leroy Quet, Jan 18 2002

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A007429(gcd(i,j)) for 1 <= i,j <= n. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Maple
    with(numtheory):seq(mul(sigma(k),k=1..n), n=1..26); # Zerinvary Lajos, Jan 11 2009
    with(numtheory):a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=a[n-1]*sigma(n) od: seq(a[n], n=0..18); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    A066780[n_] := Product[DivisorSigma[1,i], {i,1,n}]; Array[A066780,20] (* Enrique Pérez Herrero, Aug 12 2011 *)
    FoldList[Times,DivisorSigma[1,Range[20]]] (* Harvey P. Dale, Jan 29 2022 *)
  • PARI
    { p=1; for (n=1, 100, write("b066780.txt", n, " ", p*=sigma(n)) ) } \\ Harry J. Smith, Mar 25 2010

Formula

Lim_{n->infinity} (a(n)^(1/n)) / n = A345144 / exp(1) = 0.57447937538407152396420163967936309825692994713661226083669171312803511135... - Vaclav Kotesovec, Jun 09 2021