A066897 Total number of odd parts in all partitions of n.
1, 2, 5, 8, 15, 24, 39, 58, 90, 130, 190, 268, 379, 522, 722, 974, 1317, 1754, 2330, 3058, 4010, 5200, 6731, 8642, 11068, 14076, 17864, 22528, 28347, 35490, 44320, 55100, 68355, 84450, 104111, 127898, 156779, 191574, 233625, 284070, 344745, 417292, 504151
Offset: 1
Examples
a(4) = 8 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], we have a total of 0+2+0+2+4=8 odd parts.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Haskell
a066897 = p 0 1 where p o _ 0 = o p o k m | m < k = 0 | otherwise = p (o + mod k 2) k (m - k) + p o (k + 1) m -- Reinhard Zumkeller, Mar 09 2012
-
Haskell
a066897 = length . filter odd . concat . ps 1 where ps _ 0 = [[]] ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)] -- Reinhard Zumkeller, Jul 13 2013
-
Maple
g:=sum(x^(2*j-1)/(1-x^(2*j-1)),j=1..70)/product(1-x^j,j=1..70): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..44); # Emeric Deutsch, Mar 13 2006 b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, n] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..50); # Alois P. Heinz, Mar 22 2012
-
Mathematica
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i] o[n_] := Sum[f[n, i], {i, 1, n, 2}] e[n_] := Sum[f[n, i], {i, 2, n, 2}] Table[o[n], {n, 1, 45}] (* A066897 *) Table[e[n], {n, 1, 45}] (* A066898 *) %% - % (* A209423 *) (* Clark Kimberling, Mar 08 2012 *) b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}] ]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 26 2015, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} b(k)*numbpart(n-k), where b(k)=A001227(k)=number of odd divisors of k and numbpart() is A000041. - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k=0..n} k*A103919(n,k). - Emeric Deutsch, Mar 13 2006
G.f.: Sum_{j>=1}(x^(2j-1)/(1-x^(2j-1)))/Product_{j>=1}(1-x^j). - Emeric Deutsch, Mar 13 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(24*n/Pi^2)) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018
Extensions
More terms from Vladeta Jovovic, Jan 26 2002
Comments