cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066961 Numbers k such that sigma(k) divides sigma(sigma(k)).

Original entry on oeis.org

1, 5, 12, 54, 56, 87, 95, 276, 308, 427, 429, 446, 455, 501, 581, 611, 9120, 9180, 9504, 9720, 9960, 10296, 10620, 10740, 10824, 11070, 11310, 11480, 11484, 11556, 11628, 11748, 11934, 11960, 12024, 12036, 12072, 12084, 12376, 12460, 12510, 12570
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2002

Keywords

Comments

Is this sequence finite?
These are numbers k such that sigma(k) is a multiply-perfect number (A007691). - Ivan N. Ianakiev, Sep 13 2016

Examples

			12 is in the sequence since sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 divides sigma(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56. - _Michael B. Porter_, Sep 22 2016
		

Crossrefs

Subsequences: A323653 (intersection with A007691, or equally, with A019278), A353365 (where the quotient is a power of 2).

Programs

  • Magma
    [n: n in [1..13000] | (SumOfDivisors(SumOfDivisors(n)) mod SumOfDivisors(n) eq 0)]; // Vincenzo Librandi, Sep 13 2016
  • Maple
    with(numtheory): A066961:=n->`if`(sigma(sigma(n)) mod sigma(n) = 0, n, NULL): seq(A066961(n), n=1..2*10^4); # Wesley Ivan Hurt, Sep 22 2016
  • Mathematica
    Select[Range[30000], Divisible[DivisorSigma[1, DivisorSigma[1, #]], DivisorSigma[1, #]] &] (* Ivan N. Ianakiev, Sep 13 2016 *)
  • PARI
    isok(n) = my(s=sigma(n)); s && ((sigma(s) % s) == 0); \\ Michel Marcus, Sep 17 2016
    

Extensions

More terms from Lior Manor, Feb 06 2002