A066961 Numbers k such that sigma(k) divides sigma(sigma(k)).
1, 5, 12, 54, 56, 87, 95, 276, 308, 427, 429, 446, 455, 501, 581, 611, 9120, 9180, 9504, 9720, 9960, 10296, 10620, 10740, 10824, 11070, 11310, 11480, 11484, 11556, 11628, 11748, 11934, 11960, 12024, 12036, 12072, 12084, 12376, 12460, 12510, 12570
Offset: 1
Keywords
Examples
12 is in the sequence since sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 divides sigma(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56. - _Michael B. Porter_, Sep 22 2016
Links
- Antti Karttunen, Table of n, a(n) for n = 1..3718 (first 1000 terms from Harry J. Smith)
- Index entries for sequences where odd perfect numbers must occur, if they exist at all
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Magma
[n: n in [1..13000] | (SumOfDivisors(SumOfDivisors(n)) mod SumOfDivisors(n) eq 0)]; // Vincenzo Librandi, Sep 13 2016
-
Maple
with(numtheory): A066961:=n->`if`(sigma(sigma(n)) mod sigma(n) = 0, n, NULL): seq(A066961(n), n=1..2*10^4); # Wesley Ivan Hurt, Sep 22 2016
-
Mathematica
Select[Range[30000], Divisible[DivisorSigma[1, DivisorSigma[1, #]], DivisorSigma[1, #]] &] (* Ivan N. Ianakiev, Sep 13 2016 *)
-
PARI
isok(n) = my(s=sigma(n)); s && ((sigma(s) % s) == 0); \\ Michel Marcus, Sep 17 2016
Extensions
More terms from Lior Manor, Feb 06 2002
Comments