cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A368769 a(n) = (n!)^3 * Sum_{k=1..n} 1/(k!)^3.

Original entry on oeis.org

0, 1, 9, 244, 15617, 1952126, 421659217, 144629111432, 74050105053185, 53982526583771866, 53982526583771866001, 71850742883000353647332, 124158083701824611102589697, 272775309892908670592389564310, 748495450346141392105516964466641
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^3 Sum[1/(k!)^3,{k,n}],{n,0,20}] (* Harvey P. Dale, May 11 2025 *)
  • PARI
    a(n) = n!^3*sum(k=1, n, 1/k!^3);

Formula

a(0) = 0; a(n) = n^3 * a(n-1) + 1.
a(n) = A217284(n) - (n!)^3.
a(n) ~ (A271574 - 1) * (n!)^3. - Vaclav Kotesovec, Jan 05 2024

A180255 a(n) = n^2 * a(n-1) + n, a(0)=0.

Original entry on oeis.org

0, 1, 6, 57, 916, 22905, 824586, 40404721, 2585902152, 209458074321, 20945807432110, 2534442699285321, 364959748697086236, 61678197529807573897, 12088926715842284483826, 2720008511064514008860865, 696322178832515586268381456, 201237109682597004431562240801
Offset: 0

Views

Author

Groux Roland, Jan 17 2011

Keywords

Comments

Integral_{x=0..1} x^n*BesselI(0,2*x^(1/2)) dx = A006040(n)*BesselI(1,2) - a(n)*BesselI(0,2). An elementary consequence is the irrationality of BesselI(0,2)/BesselI(1,2).

Crossrefs

Programs

  • Mathematica
    FoldList[#2^2*# + #2 &, Range[0, 20]] (* Paolo Xausa, Jun 19 2025 *)
  • Maxima
    a[0]:0$ a[n]:=n^2*a[n-1]+n$ makelist(a[n], n, 0, 15); /* Bruno Berselli, May 23 2011 */
  • PARI
    a(n)=if(n==0,0,(n)^2*a(n-1)+(n));
    for(n=0,12,print1(a(n),", "));  /* show terms */
    

Formula

From Seiichi Manyama, Jan 05 2024: (Start)
a(n) = (n!)^2 * Sum_{k=0..n} k/(k!)^2.
a(n) = n * A228229(n-1) for n > 0. (End)

A340789 a(n) = (n!)^2 * Sum_{k=1..n} (-1)^(k+1) / (k!)^2.

Original entry on oeis.org

0, 1, 3, 28, 447, 11176, 402335, 19714416, 1261722623, 102199532464, 10219953246399, 1236614342814280, 178072465365256319, 30094246646728317912, 5898472342758750310751, 1327156277120718819918976, 339752006942904017899257855, 98188330006499261172885520096
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^2 Sum[(-1)^(k + 1)/k!^2, {k, 1, n}], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[(1 - BesselJ[0, 2 Sqrt[x]])/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = (1 - BesselJ(0,2*sqrt(x))) / (1 - x).
a(0) = 0; a(n) = n^2 * a(n-1) - (-1)^n.

A346410 a(n) = (n!)^2 * Sum_{k=0..n-1} 1 / ((n-k) * k!)^2.

Original entry on oeis.org

0, 1, 5, 22, 152, 2001, 45097, 1527506, 71864928, 4466430513, 353828600029, 34770661312190, 4148422395161464, 590479899466175681, 98824492409739430401, 19209838771051338898234, 4291488438323868507946880, 1091819942877526843993466529, 313819508664449992611846900981
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2 Sum[1/((n - k) k!)^2, {k, 0, n - 1}], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[PolyLog[2, x] BesselI[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = polylog(2,x) * BesselI(0,2*sqrt(x)).

A368787 a(n) = (n+1) * (n!)^2 * Sum_{k=1..n} 1/((k+1) * (k!)^2).

Original entry on oeis.org

0, 1, 7, 85, 1701, 51031, 2143303, 120024969, 8641797769, 777761799211, 85553797913211, 11293101324543853, 1761723806628841069, 320633732806449074559, 67333083889354305657391, 16159940133445033357773841, 4395503716297049073314484753
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (n+1)*n!^2*sum(k=1, n, 1/((k+1)*k!^2));

Formula

a(0) = 0; a(n) = (n+1) * n * a(n-1) + 1.
a(n) = A228229(n) - (n+1) * (n!)^2.
Showing 1-5 of 5 results.