A067077 Numbers whose product of distinct prime factors is equal to its sum of digits.
1, 2, 3, 5, 6, 7, 24, 375, 392, 640, 2401, 4802, 4913, 6400, 7744, 17576, 42592, 64000, 106496, 234256, 295936, 468750, 546875, 628864, 640000, 877952, 1124864, 1966080, 2839714, 3687936, 4687500, 4816896, 4952198, 6400000, 6453888
Offset: 1
Examples
The prime factors of 375 are 3,5, which have product = 15, the sum of the digits of 375, so 375 is a term of the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 71 terms from Harry J. Smith)
Programs
-
Mathematica
f[n_] := Times@@ (First/@ FactorInteger[n]); g[n_] := Plus @@ IntegerDigits[n]; Select[Range[10^5], f[#] == g[#] &] (* or *) nd=12; up=10^nd; L={1}; Do[If[SquareFreeQ[su], ps = First /@ FactorInteger[su]; nps = Length@ ps; Clear[ric]; ric[n_, i_] := Block[{e = 0, m}, If[i > nps, If[Plus @@ IntegerDigits[su n] == su, Sow[su n]], While[ (m = n ps[[i]]^e ) su < up, ric[m, i+1]; e++]]]; z = Reap[ ric[1, 1]][[2]]; If[z != {}, L = Union[L, z[[1]]]]], {su, 2, 9 nd}]; L (* fast, terms < 10^12, Giovanni Resta, Apr 21 2017 *) Select[Range[65*10^5],Times@@FactorInteger[#][[All,1]]==Total[ IntegerDigits[ #]]&] (* Harvey P. Dale, Dec 16 2018 *)
-
PARI
isok(k)={vecprod(factor(k)[,1]) == sumdigits(k)} \\ Harry J. Smith, May 06 2010
Extensions
a(19)-a(35) from Donovan Johnson, Sep 29 2009
a(1)=1 prepended by Giovanni Resta, Apr 21 2017
Comments