cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130045 Denominator of polynomial a[1]=1, a[2]->1+1/(x*a[1]), a[3]->1+1/(2*x*a[2]), a[4]->1+1/(3*x*a[3]),.. giving 1,(1+x)/x,(3+2*x)/(2*(1+x)),(2+11*x+6*x^2)/(3*x*(3+2*x)), .. at x-> -1. Absolute values are equal to A067078(n)/n.

Original entry on oeis.org

1, 1, 4, -9, -20, 55, 210, -1085, -7000, 53235, 462350, -4500265, -48454980, 571411295, 7321388410, -101249656725, -1502852293040, 23827244817355, 401839065437670, -7182224591785985, -135607710526966300, 2696935204638786615, 56349204870460046930, -1234002202313888987245
Offset: 1

Views

Author

Wouter Meeussen, May 02 2007

Keywords

Comments

The iterated form (see Mathematica line) links some seemingly disparate sequences.

Crossrefs

Programs

  • Mathematica
    Denominator[Together[k=1;NestList[1+1/((k++)x #)&,x,24]]]/.x->(-1)

Formula

A067078 has recurrence a(1) = 1, a(2) = 2, a(n) = (n-1)*a(n-1) - (n-2)*a(n-2).
abs(a(n))=(n-1)*sum(k!,k=0..n-3)+(n-1), n>1. [From Gary Detlefs, Feb 05 2011]

A014288 a(n) = floor(Sum_{k=0..n} k!/2), or floor( A003422(n+1)/2 ).

Original entry on oeis.org

0, 1, 2, 5, 17, 77, 437, 2957, 23117, 204557, 2018957, 21977357, 261478157, 3374988557, 46964134157, 700801318157, 11162196262157, 189005910310157, 3390192763174157, 64212742967590157, 1280663747055910157, 26826134832910630157, 588826498721714470157
Offset: 0

Views

Author

Keywords

Comments

The first term a(0) would be a fraction if the floor( ... ) function were omitted; for n >= 2, all terms from A003422 are even. - M. F. Hasler, Dec 16 2007

Crossrefs

Programs

  • Magma
    [Floor((&+[Factorial(j): j in [0..n]])/2): n in [0..30]]; // G. C. Greubel, Sep 05 2022
    
  • Maple
    a:= proc(n) a(n):= `if`(n<3, n, (n+1)*a(n-1)-n*a(n-2)) end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 01 2013
  • Mathematica
    f[x_] := {Floor[1 + (n - x[[2]])*x[[1]]], x[[2]] + 1};
    a[0] = 0; a[n_] := Nest[f, {1, 0}, n][[1]]/2 (* Joseph E. Cooper III (easonrevant(AT)gmail.com), Aug 19 2008 *) (* updated by Jean-François Alcover, Jun 01 2015 *)
    a[n_]:=-(1/2) Subfactorial[-1]-1/2(-1)^n Gamma[2+n] Subfactorial[-2-n]; Table[a[n] //FullSimplify,{n,0,25}] (* Gerry Martens, May 29 2015 *)
  • PARI
    A014288(n)=sum(k=0,n,k!)>>1 \\ M. F. Hasler, Dec 16 2007
    
  • Python
    from math import factorial
    def A014288(n): return sum(factorial(k) for k in range(n+1))>>1 # Chai Wah Wu, Nov 01 2023
  • SageMath
    [sum(factorial(j) for j in (0..n))//2 for n in (0..30)] # G. C. Greubel, Sep 05 2022
    

Formula

a(0)=0, a(1)=1, a(2)=2, a(n) = (n+1)*a(n-1) - n*a(n-2). - Benoit Cloitre, Sep 07 2002
a(0) = 0, a(n) = (1/2)*floor(1 + 1*floor(1 + 2*floor(1 + ... + (n-1)*floor(1+n*floor(1))). - Joseph E. Cooper III (easonrevant(AT)gmail.com), Aug 19 2008
G.f.: G(0)/(1-x)/2 -1/2, where G(k)= 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: A(x) = (Sum_{n>=0} x^n*n!)/(2-2*x) - 1/2 = G(0)/(4*(1-x)) - 1/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) ~ n!/2. - Vaclav Kotesovec, Aug 10 2013
E.g.f.: -1/2 + (exp(x)/2)*Sum_{k>=0} (k! - k*Gamma(k,x)). - Robert Israel, Jun 01 2015
a(n) = ((n+1)!*ExpIntegral(n+2,-1)+Ei(1)+Pi*i)/(2*e). - Ammar Khatab, Aug 14 2020

Extensions

Edited by M. F. Hasler, Dec 16 2007

A165680 Triangle of the divisors of the coefficients of triangles A138771 and A165675.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 1, 2, 6, 24, 1, 1, 1, 2, 6, 24, 120, 1, 1, 1, 2, 6, 24, 120, 720, 1, 1, 1, 2, 6, 24, 120, 720, 5040, 1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Examples

			Triangle starts:
1,
1, 1,
1, 1, 1,
1, 1, 1, 2,
1, 1, 1, 2, 6,
1, 1, 1, 2, 6, 24,
1, 1, 1, 2, 6, 24, 120,
1, 1, 1, 2, 6, 24, 120, 720,
1, 1, 1, 2, 6, 24, 120, 720, 5040,
1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,
...
		

Crossrefs

A000012 (3x), A007395, A010722, A010863 equal the first six left hand columns.
A159333 equals, for n=>-1, all right hand columns.
A067078 equals the row sums.

Programs

  • Maple
    nmax:=11: for n from 1 to nmax do a(n,1):=1 od: for n from 2 to nmax do for m from 2 to n do a(n,m):=(m-2)! od: od: for n from 1 to nmax do seq(a(n,m),m=1..n) od;

Formula

a(n) = A138771(n)/A165675(n-1).
Showing 1-3 of 3 results.