A130045
Denominator of polynomial a[1]=1, a[2]->1+1/(x*a[1]), a[3]->1+1/(2*x*a[2]), a[4]->1+1/(3*x*a[3]),.. giving 1,(1+x)/x,(3+2*x)/(2*(1+x)),(2+11*x+6*x^2)/(3*x*(3+2*x)), .. at x-> -1. Absolute values are equal to A067078(n)/n.
Original entry on oeis.org
1, 1, 4, -9, -20, 55, 210, -1085, -7000, 53235, 462350, -4500265, -48454980, 571411295, 7321388410, -101249656725, -1502852293040, 23827244817355, 401839065437670, -7182224591785985, -135607710526966300, 2696935204638786615, 56349204870460046930, -1234002202313888987245
Offset: 1
A014288
a(n) = floor(Sum_{k=0..n} k!/2), or floor( A003422(n+1)/2 ).
Original entry on oeis.org
0, 1, 2, 5, 17, 77, 437, 2957, 23117, 204557, 2018957, 21977357, 261478157, 3374988557, 46964134157, 700801318157, 11162196262157, 189005910310157, 3390192763174157, 64212742967590157, 1280663747055910157, 26826134832910630157, 588826498721714470157
Offset: 0
-
[Floor((&+[Factorial(j): j in [0..n]])/2): n in [0..30]]; // G. C. Greubel, Sep 05 2022
-
a:= proc(n) a(n):= `if`(n<3, n, (n+1)*a(n-1)-n*a(n-2)) end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 01 2013
-
f[x_] := {Floor[1 + (n - x[[2]])*x[[1]]], x[[2]] + 1};
a[0] = 0; a[n_] := Nest[f, {1, 0}, n][[1]]/2 (* Joseph E. Cooper III (easonrevant(AT)gmail.com), Aug 19 2008 *) (* updated by Jean-François Alcover, Jun 01 2015 *)
a[n_]:=-(1/2) Subfactorial[-1]-1/2(-1)^n Gamma[2+n] Subfactorial[-2-n]; Table[a[n] //FullSimplify,{n,0,25}] (* Gerry Martens, May 29 2015 *)
-
A014288(n)=sum(k=0,n,k!)>>1 \\ M. F. Hasler, Dec 16 2007
-
from math import factorial
def A014288(n): return sum(factorial(k) for k in range(n+1))>>1 # Chai Wah Wu, Nov 01 2023
-
[sum(factorial(j) for j in (0..n))//2 for n in (0..30)] # G. C. Greubel, Sep 05 2022
A165680
Triangle of the divisors of the coefficients of triangles A138771 and A165675.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 1, 2, 6, 24, 1, 1, 1, 2, 6, 24, 120, 1, 1, 1, 2, 6, 24, 120, 720, 1, 1, 1, 2, 6, 24, 120, 720, 5040, 1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880
Offset: 1
Triangle starts:
1,
1, 1,
1, 1, 1,
1, 1, 1, 2,
1, 1, 1, 2, 6,
1, 1, 1, 2, 6, 24,
1, 1, 1, 2, 6, 24, 120,
1, 1, 1, 2, 6, 24, 120, 720,
1, 1, 1, 2, 6, 24, 120, 720, 5040,
1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,
...
A159333 equals, for n=>-1, all right hand columns.
-
nmax:=11: for n from 1 to nmax do a(n,1):=1 od: for n from 2 to nmax do for m from 2 to n do a(n,m):=(m-2)! od: od: for n from 1 to nmax do seq(a(n,m),m=1..n) od;
Showing 1-3 of 3 results.
Comments