cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A003422 Left factorials: !n = Sum_{k=0..n-1} k!.

Original entry on oeis.org

0, 1, 2, 4, 10, 34, 154, 874, 5914, 46234, 409114, 4037914, 43954714, 522956314, 6749977114, 93928268314, 1401602636314, 22324392524314, 378011820620314, 6780385526348314, 128425485935180314, 2561327494111820314, 53652269665821260314, 1177652997443428940314
Offset: 0

Views

Author

Keywords

Comments

Number of {12, 12*, 1*2, 21*}- and {12, 12*, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the number of permutations on [n] that avoid the patterns 2n1 and n12. An occurrence of a 2n1 pattern is a (scattered) subsequence a-n-b with a > b. - David Callan, Nov 29 2007
Also, numbers left over after the following sieving process: At step 1, keep all numbers of the set N = {0, 1, 2, ...}. In step 2, keep only every second number after a(2) = 2: N' = {0, 1, 2, 4, 6, 8, 10, ...}. In step 3, keep every third of the numbers following a(3) = 4, N" = {0, 1, 2, 4, 10, 16, 22, ...}. In step 4, keep every fourth of the numbers beyond a(4) = 10: {0, 1, 2, 4, 10, 34, 58, ...}, and so on. - M. F. Hasler, Oct 28 2010
If s(n) is a second-order recurrence defined as s(0) = x, s(1) = y, s(n) = n*(s(n - 1) - s(n - 2)), n > 1, then s(n) = n*y - n*a(n - 1)*x. - Gary Detlefs, May 27 2012
a(n) is the number of lists of {1, ..., n} with (1st element) = (smallest element) and (k-th element) <> (k-th smallest element) for k > 1, where a list means an ordered subset. a(4) = 10 because we have the lists: [1], [2], [3], [4], [1, 3, 2], [1, 4, 2], [1, 4, 3], [2, 4, 3], [1, 3, 4, 2], [1, 4, 2, 3]. Cf. A000262. - Geoffrey Critzer, Oct 04 2012
Consider a tree graph with 1 vertex. Add an edge to it with another vertex. Now add 2 edges with vertices to this vertex, and then 3 edges to each open vertex of the tree (not the first one!), and the next stage is to add 4 edges, and so on. The total number of vertices at each stage give this sequence (see example). - Jon Perry, Jan 27 2013
Additive version of the superfactorials A000178. - Jon Perry, Feb 09 2013
Repunits in the factorial number system (see links). - Jon Perry, Feb 17 2013
Whether n|a(n) only for 1 and 2 remains an open problem. A published 2004 proof was retracted in 2011. This is sometimes known as Kurepa's conjecture. - Robert G. Wilson v, Jun 15 2013, corrected by Jeppe Stig Nielsen, Nov 07 2015.
!n is not always squarefree for n > 3. Miodrag Zivkovic found that 54503^2 divides !26541. - Arkadiusz Wesolowski, Nov 20 2013
a(n) gives the position of A007489(n) in A227157. - Antti Karttunen, Nov 29 2013
Matches the total domination number of the Bruhat graph from n = 2 to at least n = 5. - Eric W. Weisstein, Jan 11 2019
For the connection with Kurepa trees, see A. Petojevic, The {K_i(z)}{i=1..oo} functions, Rocky Mtn. J. Math., 36 (2006), 1637-1650. - _Aleksandar Petojevic, Jun 29 2018
This sequence converges in the p-adic topology, for every prime number p. - Harry Richman, Aug 13 2024

Examples

			!5 = 0! + 1! + 2! + 3! + 4! = 1 + 1 + 2 + 6 + 24 = 34.
x + 2*x^2 + 4*x^3 + 10*x^4 + 34*x^5 + 154*x^6 + 874*x^7 + 5914*x^8 + 46234*x^9 + ...
From _Arkadiusz Wesolowski_, Aug 06 2012: (Start)
Illustration of initial terms:
.
. o        o         o            o                         o
.          o         o            o                         o
.                   o o          o o                       o o
.                              ooo ooo                   ooo ooo
.                                             oooo oooo oooo oooo oooo oooo
.
. 1        2         4            10                        34
.
(End)
The tree graph. The total number of vertices at each stage is 1, 2, 4, 10, ...
    0 0
    |/
    0-0
   /
0-0
   \
    0-0
    |\
    0 0
- _Jon Perry_, Jan 27 2013
		

References

  • Richard K. Guy, Unsolved Problems Number Theory, Section B44.
  • D. Kurepa, On the left factorial function !n. Math. Balkanica 1 1971 147-153.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003422 n = a003422_list !! n
    a003422_list = scanl (+) 0 a000142_list
    -- Reinhard Zumkeller, Dec 27 2011
    
  • Maple
    A003422 := proc(n) local k; add(k!,k=0..n-1); end proc:
    # Alternative, using the Charlier polynomials A137338:
    C := proc(n, x) option remember; if n > 0 then (x-n)*C(n-1, x) - n*C(n-2, x)
    elif n = 0 then 1 else 0 fi end: A003422 := n -> (-1)^(n+1)*C(n-1, -1):
    seq(A003422(n), n=0..22); # Peter Luschny, Nov 28 2018
    # third Maple program:
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+(n-1)!) end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 24 2022
  • Mathematica
    Table[Sum[i!, {i, 0, n - 1}], {n, 0, 20}] (* Stefan Steinerberger, Mar 31 2006 *)
    Join[{0}, Accumulate[Range[0, 25]!]] (* Harvey P. Dale, Nov 19 2011 *)
    a[0] = 0; a[1] = 1; a[n_] := a[n] = n*a[n - 1] - (n - 1)*a[n - 2]; Array[a, 23, 0] (* Robert G. Wilson v, Jun 15 2013 *)
    a[n_] := (-1)^n*n!*Subfactorial[-n-1]-Subfactorial[-1]; Table[a[n] // FullSimplify, {n, 0, 22}] (* Jean-François Alcover, Jan 09 2014 *)
    RecurrenceTable[{a[n] == n a[n - 1] - (n - 1) a[n - 2], a[0] == 0, a[1] == 1}, a, {n, 0, 10}] (* Eric W. Weisstein, Jan 11 2019 *)
    Range[0, 20]! CoefficientList[Series[(ExpIntegralEi[1] - ExpIntegralEi[1 - x]) Exp[x - 1], {x, 0, 20}], x] (* Eric W. Weisstein, Jan 11 2019 *)
    Table[(-1)^n n! Subfactorial[-n - 1] - Subfactorial[-1], {n, 0, 20}] // FullSimplify (* Eric W. Weisstein, Jan 11 2019 *)
    Table[(I Pi + ExpIntegralEi[1] + (-1)^n n! Gamma[-n, -1])/E, {n, 0, 20}] // FullSimplify (* Eric W. Weisstein, Jan 11 2019 *)
  • Maxima
    makelist(sum(k!,k,0,n-1), n, 0, 20); /* Stefano Spezia, Jan 11 2019 */
    
  • PARI
    a003422(n)=sum(k=0,n-1,k!) \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    from itertools import count, islice
    def A003422_gen(): # generator of terms
        yield from (0,1)
        c, f = 1, 1
        for n in count(1):
            yield (c:= c + (f:= f*n))
    A003422_list = list(islice(A003422_gen(),20)) # Chai Wah Wu, Jun 22 2022
    
  • Python
    def a(n):
        if n == 0: return 0
        s = f = 1
        for k in range(1, n):
            f *= k
            s += f
        return round(s)
    print([a(n) for n in range(24)])  # Peter Luschny, Mar 05 2024

Formula

D-finite with recurrence: a(n) = n*a(n - 1) - (n - 1)*a(n - 2). - Henry Bottomley, Feb 28 2001
Sequence is given by 1 + 1*(1 + 2*(1 + 3*(1 + 4*(1 + ..., terminating in n*(1)...). - Jon Perry, Jun 01 2004
a(n) = Sum_{k=0..n-1} P(n, k) / C(n, k). - Ross La Haye, Sep 20 2004
E.g.f.: (Ei(1) - Ei(1 - x))*exp(-1 + x) where Ei(x) is the exponential integral. - Djurdje Cvijovic and Aleksandar Petojevic, Apr 11 2000
a(n) = Integral_{x = 0..oo} [(x^n - 1)/(x - 1)]*exp(-x) dx. - Gerald McGarvey, Oct 12 2007
A007489(n) = !(n + 1) - 1 = a(n + 1) - 1. - Artur Jasinski, Nov 08 2007. Typos corrected by Antti Karttunen, Nov 29 2013
Starting (1, 2, 4, 10, 34, 154, ...), = row sums of triangle A135722. - Gary W. Adamson, Nov 25 2007
a(n) = a(n - 1) + (n - 1)! for n >= 2. - Jaroslav Krizek, Jun 16 2009
E.g.f. A(x) satisfies the differential equation A'(x) = A(x) + 1/(1 - x). - Vladimir Kruchinin, Jan 19 2011
a(n + 1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = A182386(k) for k = 0, 1, ..., n. - Michael Somos, Apr 27 2012
From Sergei N. Gladkovskii, May 09 2013 to Oct 22 2013: (Start)
Continued fractions:
G.f.: x/(1-x)*Q(0) where Q(k) = 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/Q(k+1))).
G.f.: G(0)*x/(1-x)/2 where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))).
G.f.: 2*x/(1-x)/G(0) where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).
G.f.: W(0)*x/(1+sqrt(x))/(1-x) where W(k) = 1 + sqrt(x)/(1 - sqrt(x)*(k+1)/(sqrt(x)*(k+1) + 1/W(k+1))).
G.f.: B(x)*(1+x)/(1-x) where B(x) is the g.f. of A153229.
G.f.: x/(1-x) + x^2/(1-x)/Q(0) where Q(k) = 1 - 2*x*(2*k+1) - x^2*(2*k+1)*(2*k+2)/(1 - 2*x*(2*k+2) - x^2*(2*k+2)*(2*k+3)/Q(k+1)).
G.f.: x*(1+x)*B(x) where B(x) is the g.f. of A136580. (End)
a(n) = (-1)^(n+1)*C(n-1, -1) where C(n, x) are the Charlier polynomials (with parameter a=1) as given in A137338. (Evaluation at x = 1 gives A232845.) - Peter Luschny, Nov 28 2018
a(n) = (a(n-3)*(n-2)^2*(n-3)! + a(n-1)^2)/a(n-2) (empirical). - Gary Detlefs, Feb 25 2022
a(n) = signum(n)/b(1,n) with b(i,n) = i - [iMohammed Bouras, Sep 07 2022
Sum_{n>=1} 1/a(n) = A357145. - Amiram Eldar, Oct 01 2022

A067078 a(1) = 1, a(2) = 2, a(n) = (n-1)*a(n-1) - (n-2)*a(n-2).

Original entry on oeis.org

1, 2, 3, 5, 11, 35, 155, 875, 5915, 46235, 409115, 4037915, 43954715, 522956315, 6749977115, 93928268315, 1401602636315, 22324392524315, 378011820620315, 6780385526348315, 128425485935180315, 2561327494111820315
Offset: 1

Views

Author

Amarnath Murthy, Jan 05 2002

Keywords

Comments

Successive differences are factorials, or (n+1)st successive difference divided by n-th successive difference = n. I.e., {a(n+2)-a(n+1)}/{a(n+1)-a(n)} = n. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 14 2003
Equals the row sums of A165680. - Johannes W. Meijer, Oct 16 2009

Examples

			a(6) = 35, a(5)= 11 hence a(7) = 6*35 - 5*11 = 155.
		

Crossrefs

Programs

  • Haskell
    a067078 n = a067078_list !! (n-1)
    a067078_list = scanl (+) 1 a000142_list
    -- Reinhard Zumkeller, Dec 27 2011
  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = (n - 1)*a[n - 1] - (n - 2)*a[n - 2]; Table[ a[n], {n, 1, 25} ]
    a=FoldList[Plus,2,(Range@40)! ];PrependTo[a,1] (* Vladimir Joseph Stephan Orlovsky, May 21 2010 *)
  • PARI
    A067078(n)=sum(k=0, n-2, k!, 1) \\ M. F. Hasler, Dec 16 2007
    

Formula

a(n) = 1 + Sum_{i=0..n-2} i! = 2*A014288(n-1)+1 = A007489(n-2)+2 (n>1). - Henry Bottomley, Oct 23 2002; corrected by M. F. Hasler, Dec 16 2007
a(n) = 1+!(n-1) = 1+A003422(n-1); a(n+1)=a(n)+(n-1)!. - M. F. Hasler, Dec 16 2007
E.g.f.: A(x)=x*B(x) satisfies the differential equation B'(x)=B(x)+log(1/(1-x))+1. - Vladimir Kruchinin, Jan 19 2011

Extensions

More terms from Robert G. Wilson v, Jan 07 2002
Edited by M. F. Hasler, Dec 16 2007

A117396 Triangle, read by rows, defined by: T(n,k) = (k+1)*T(n,k+1) - Sum_{j=1..n-k-1} T(j,0)*T(n,j+k+1) for n>k with T(n,n)=1 for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 11, 4, 1, 1, 77, 51, 19, 5, 1, 1, 437, 291, 109, 29, 6, 1, 1, 2957, 1971, 739, 197, 41, 7, 1, 1, 23117, 15411, 5779, 1541, 321, 55, 8, 1, 1, 204557, 136371, 51139, 13637, 2841, 487, 71, 9, 1, 1, 2018957, 1345971, 504739, 134597, 28041, 4807, 701, 89, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2006

Keywords

Comments

Columns equal the partial sums of columns of triangle A092582 for k>0: T(n, k) - T(n-1, k) = A092582(n,k) = number of permutations p of [n] having length of first run equal to k.

Examples

			Triangle begins:
  1;
  1,      1;
  1,      2,      1;
  1,      5,      3,     1;
  1,     17,     11,     4,     1;
  1,     77,     51,    19,     5,    1;
  1,    437,    291,   109,    29,    6,   1;
  1,   2957,   1971,   739,   197,   41,   7,  1;
  1,  23117,  15411,  5779,  1541,  321,  55,  8, 1;
  1, 204557, 136371, 51139, 13637, 2841, 487, 71, 9, 1; ...
Matrix inverse is:
   1;
  -1,  1;
   1, -2,  1;
   1,  1, -3,  1;
   1,  1,  1, -4,  1;
   1,  1,  1,  1, -5, 1; ...
Matrix log is the integer triangle A117398:
    0;
    1,  0;
    0,  2,  0;
   -1,  2,  3,  0;
   -3,  4,  5,  4,  0;
   -9, 14, 15,  9,  5,  0;
  -33, 68, 65, 34, 14,  6,  0; ...
		

Crossrefs

Cf. A014288 (column 1), A056199 (column 2), A117397 (column 3), A003422 (row sums), A117398 (matrix log); A092582.

Programs

  • Magma
    [k eq 0 select 1 else k*(&+[Factorial(j)/Factorial(k+1): j in [k-1..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 24 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, k*Sum[j!/(k+1)!, {j,k-1,n}]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 24 2021 *)
  • PARI
    T(n,k)=if(n
    				
  • PARI
    /* Definition by Matrix Inverse: */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,if(r==c+1,-c,1))));(M^-1)[n+1,k+1]
    
  • PARI
    T(n,k)=if(nPaul D. Hanna, Jun 20 2006
    
  • Sage
    def A117396(n,k): return 1 if (k==0) else k*sum(factorial(j)/factorial(k+1) for j in (k-1..n))
    flatten([[A117396(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 24 2021

Formula

T(n,k) = k*Sum_{j=k-1..n} j!/(k+1)! for n >= k > 0, with T(n,0) = 1 for n >= 0. - Paul D. Hanna, Jun 20 2006

A100614 Numbers n such that (!n)/2 is prime, where !n = Sum_{k=0..n-1} k!.

Original entry on oeis.org

3, 4, 5, 8, 9, 10, 11, 30, 76, 163, 271, 273, 354, 721, 1796, 3733, 4769, 9316, 12221, 41532
Offset: 1

Views

Author

R. K. Guy, Dec 02 2004

Keywords

Comments

No other terms below 50000. - Serge Batalov, Jul 23 2017

References

  • R. K. Guy, Unsolved Problems In Number Theory, B44.

Crossrefs

Cf. A014288, Left factorials: A003422.
See A124375 for another version.

Programs

  • Mathematica
    s = 1; Do[s = s + n!; If[ PrimeQ[s/2], Print[n + 1]], {n, 10^3}] (* Robert G. Wilson v, Dec 02 2004 *)

Formula

When A014288(n-1) is prime.

Extensions

a(14) from Robert G. Wilson v, Dec 02 2004
a(15)=1796 from Ray Chandler, Dec 02 2004
a(17) from T. D. Noe, Dec 04 2004
Corrected by adding a(16)=3733 from Eric W. Weisstein, Oct 29 2005
a(18)=9316 from Eric W. Weisstein, Dec 27 2005
a(19)=12221 from Eric W. Weisstein, Oct 19 2006
a(20)=41532 from Serge Batalov, Jul 22 2017

A093468 a(1) = 1, a(2) = 2; for n >= 2, a(n+1) = a(n) + Sum {a(n)-a(i), i = 1 to n}.

Original entry on oeis.org

1, 2, 3, 6, 18, 78, 438, 2958, 23118, 204558, 2018958, 21977358, 261478158, 3374988558, 46964134158, 700801318158, 11162196262158, 189005910310158, 3390192763174158, 64212742967590158, 1280663747055910158
Offset: 1

Views

Author

Amarnath Murthy, Apr 07 2004

Keywords

Comments

Ignoring the different offsets, this is the partial sums of A001710. - Jonathan Vos Post and Franklin T. Adams-Watters, May 12 2010

Crossrefs

Cf. A093467.

Programs

  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = a[n - 1] + Sum[a[n - 1] - a[i], {i, n - 1}]; Table[ a[n], {n, 21}] (* Robert G. Wilson v, Apr 08 2004 *)

Formula

a(n) = A014288(n-1)+1. - Vladeta Jovovic, Apr 08 2004
a(n)=n*a(n-1)-(n-1)*a(n-2), n>3. - Gary Detlefs, Dec 30 2010

Extensions

More terms from Robert G. Wilson v, Apr 08 2004

A117397 Column 3 of triangle A117396.

Original entry on oeis.org

1, 4, 19, 109, 739, 5779, 51139, 504739, 5494339, 65369539, 843747139, 11741033539, 175200329539, 2790549065539, 47251477577539, 847548190793539, 16053185741897539, 320165936763977539, 6706533708227657539, 147206624680428617539, 3378708717041050697539
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2006

Keywords

Comments

Equals the partial sums of column 3 of triangle A092582.

Examples

			G.f.: A(x) = 1 + 4*x + 19*x^2 + 109*x^3 + 739*x^4 + 5779*x^5 + 51139*x^6 + 504739*x^7 + 5494339*x^8 + 65369539*x^9 + 843747139*x^10 + ...
		

Crossrefs

Cf. A117396 (triangle), A014288 (column 1), A056199 (column 2), A003422 (row sums).

Programs

  • Magma
    [(&+[Factorial(j): j in [2..n+3]])/8: n in [0..30]]; // G. C. Greubel, Sep 05 2022
    
  • Maple
    a:=n->sum(j!/8,j=2..n): seq(a(n), n=3..21); # Zerinvary Lajos, Jan 08 2007
  • Mathematica
    Table[Sum[i!/8, {i, 2, n}], {n, 3, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
  • PARI
    {a(n)=1+sum(k=4,n+3,k!)*3/4!}
    for(n=0,25,print1(a(n),", "))
    
  • SageMath
    [sum(factorial(j) for j in (2..n+3))/8 for n in (0..30)] # G. C. Greubel, Sep 05 2022

Formula

G.f. satisfies A(x) = (1-x)/(1 - 5*x + 5*x^2) * (1 + x^2*A'(x)).
a(n) = 1 + Sum_{k=4..n+3} k!*3/4! for n > 0, with a(0)=1.
G.f.: W(0)/(8*x*(1-x)) -1/(4*x), where W(k) = 1 + 1/( 1 - x*(k+3)/( x*(k+3) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2013
G.f.: (Sum_{n>=0} (n+2)!*x^n)/(8*x*(1-x)) - 1/(4*x). - Sergei N. Gladkovskii, Aug 20 2013
a(n) = (1/8)*(A007489(n+3) - 1) = (1/8)*(A003422(n+4) - 2). - G. C. Greubel, Sep 05 2022

A293458 Numerator of probability that a permutation of elements of some subset of set {1,2,...,n} is a permutation of elements of some set of the form 1..k, k <= n.

Original entry on oeis.org

1, 1, 5, 17, 77, 437, 2957, 23117, 204557, 2018957, 21977357, 261478157, 3374988557, 46964134157, 700801318157, 11162196262157, 189005910310157, 3390192763174157, 64212742967590157, 1280663747055910157, 26826134832910630157, 588826498721714470157
Offset: 1

Views

Author

Vladimir Shevelev, Oct 09 2017

Keywords

Comments

The number of all permutations of elements of sets {1..k}, k <= n, is b(n) = Sum_{k=0..n} k! while the number of all permutations of elements of all subsets of set {1,2..n} is c(n) = Sum_{k=0..n} binomial(n,k)!. So the required probability (in a sample space) is b(n)/c(n), n >= 1 (after reduction of the fractions).
Apparently a(n) = A014288(n) for n > 2. - Georg Fischer, Oct 23 2018

Crossrefs

Denominators are in A293459.
Cf. A014288.

Programs

  • Mathematica
    a[n_] := Numerator[Sum[k!, {k, 0, n}]/Sum[Binomial[n, k]!, {k, 0, n}]]; Array[a, 25] (* Amiram Eldar, Sep 21 2019 *)
  • PARI
    a(n) = numerator(sum(k=0, n, k!)/sum(k=0, n, binomial(n,k)!)); \\ Michel Marcus, Oct 12 2017

Extensions

More terms from Peter J. C. Moses, Oct 09 2017

A345889 Number of tilings of an n-cell circular array with rectangular tiles of any size, and where the number of possible colors of a tile is given by the smallest cell covered.

Original entry on oeis.org

1, 4, 16, 76, 436, 2956, 23116, 204556, 2018956, 21977356, 261478156, 3374988556, 46964134156, 700801318156, 11162196262156, 189005910310156, 3390192763174156, 64212742967590156, 1280663747055910156, 26826134832910630156, 588826498721714470156
Offset: 1

Views

Author

Lara Pudwell, Jun 28 2021

Keywords

Crossrefs

Partial differences give A001710.

Programs

Formula

a(n) = Sum_{k=2..n+1} k!/2.
a(n) = A054116(n+1)/2.
a(n) = a(n-1) + A001710(n+1).
a(n) = A014288(n+1) - 1 = A003422(n+2)/2 - 1. - Alois P. Heinz, Jun 28 2021
a(n) ~ n*n!/2. - Stefano Spezia, Jun 29 2021

A159930 Triangle read by rows: a(1,1)=1. a(m,n) = a(m-1,n) + (sum of all terms in row m-1), for n

Original entry on oeis.org

1, 2, 1, 5, 4, 3, 17, 16, 15, 12, 77, 76, 75, 72, 60, 437, 436, 435, 432, 420, 360, 2957, 2956, 2955, 2952, 2940, 2880, 2520, 23117, 23116, 23115, 23112, 23100, 23040, 22680, 20160, 204557, 204556, 204555, 204552, 204540, 204480, 204120, 201600
Offset: 1

Views

Author

Leroy Quet, Apr 26 2009

Keywords

Comments

The sum of all terms in row m is (m+1)!/2. So a(m,n) = a(m-1,n) + m!/2, or is m!/2 if n=m.
Sum of m-th row = A001710(m+1). [Klaus Brockhaus, Jun 02 2009]
First column is A014288. - Franklin T. Adams-Watters, Oct 19 2013

Examples

			Triangle starts:
1;
2, 1;
5, 4, 3;
17, 16, 15, 12;
77, 76, 75, 72, 60;
		

Crossrefs

Cf. A159927.

Programs

  • Magma
    S:=[1]; T:=S; for m in [2..9] do s:=&+T; T:=[ n lt m select T[n]+s else s: n in [1..m] ]; S:=S cat T; end for; S; // Klaus Brockhaus, Jun 02 2009

Extensions

More terms from Klaus Brockhaus, Jun 02 2009

A270250 Triangle read by rows: coefficients of the polynomial (Sum_{i=0..k} (Product_{j=0..i} (x+j)))/(x*(x+2)).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 17, 24, 9, 1, 77, 131, 68, 14, 1, 437, 833, 529, 151, 20, 1, 2957, 6107, 4458, 1571, 290, 27, 1, 23117, 50819, 41164, 16860, 3870, 505, 35, 1, 204557, 473387, 416230, 191167, 51379, 8387, 819, 44, 1, 2018957, 4880507, 4589458, 2309303, 700776, 134716, 16541, 1258, 54, 1
Offset: 1

Views

Author

Michel Marcus, Mar 14 2016

Keywords

Comments

The lines offset is 1, but the columns offset is 0.

Examples

			First rows of this triangle:
   1;
   2,   1;
   5,   5,   1;
  17,  24,   9,   1;
  77, 131,  68,  14,   1;
  ...
		

Crossrefs

Cf. A007489 (values of polynomial when x=2), A014288 (first column).

Programs

  • PARI
    row(n) = Vecrev(sum(i=0, n, prod(j=0, i, x+j))/(x*(x+2)));
Showing 1-10 of 10 results.