cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033180 Numbers k such that k! contains k as a string of digits.

Original entry on oeis.org

1, 2, 4, 20, 21, 26, 30, 33, 37, 39, 42, 44, 45, 48, 51, 52, 53, 56, 59, 60, 64, 65, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 88, 91, 93, 94, 95, 96, 97, 98, 99, 116, 124, 134, 136, 140, 141, 149, 164, 165, 166, 170, 174, 180, 186, 188, 196, 198, 200, 202, 205
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a033180 n = a033180_list !! (n-1)
    a033180_list = filter ((> 0) . a067109) [1..]
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Mathematica
    Select[Range[210],MemberQ[Partition[IntegerDigits[#!],IntegerLength[#], 1], IntegerDigits[ #]]&] (* Harvey P. Dale, Dec 25 2011 *)
    Select[Range@500, StringContainsQ[ToString[#!], ToString[#]] &] (* Ivan N. Ianakiev, Jul 28 2016 *)
    Select[Range[210],SequenceCount[IntegerDigits[#!],IntegerDigits[#]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 14 2017 *)
  • Python
    from math import factorial
    def ok(n): return str(n) in str(factorial(n))
    print(list(filter(ok, range(206)))) # Michael S. Branicky, Aug 07 2021

Formula

A067109(a(n)) > 0. - Reinhard Zumkeller, Aug 23 2008

Extensions

More terms from David W. Wilson

A061014 a(n) is the smallest number k such that k! contains k exactly n times.

Original entry on oeis.org

0, 1, 37, 313, 80, 99, 586, 743, 5972, 9253, 8736, 9789
Offset: 0

Views

Author

Michel ten Voorde, May 22 2001

Keywords

Comments

Any further terms have k > 52000. - Sean A. Irvine, Jan 16 2023

Examples

			a(3)=313 because in 313! 313 appears exactly 3 times.
		

Crossrefs

Cf. A067109.

Programs

  • Mathematica
    a = Table[ -1, {12}]; Do[b = Length[ StringPosition[ ToString[n! ], ToString[n]]]; If[a[[b+1]] == -1, a[[b+1]] = n], {n, 0, 15000} ]; a

Extensions

More terms from Robert G. Wilson v, Jan 09 2002
Showing 1-2 of 2 results.